Backtrader 文档学习- Plotting -Plotting on the same axis

2024-02-08 19:52

本文主要是介绍Backtrader 文档学习- Plotting -Plotting on the same axis,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Backtrader 文档学习- Plotting -Plotting on the same axis

1.概述

在同一轴上绘图,绘图是在同一空间上绘制原始数据和稍微(随机)修改的数据,但不是在同一轴上。

核心代码,data数据正负50点。

# The filter which changes the close price
def close_changer(data, *args, **kwargs):data.close[0] += 50.0 * random.randint(-1, 1)return False  # length of stream is unchanged

图示 :
在这里插入图片描述

可以看到:

  • 图表的左右两侧有不同的刻度
  • 当看到摆动的红线(随机数据)时,这一点最为明显,它在原始数据周围振荡±50个点。
    在图上,视觉印象是这些随机数据大多时候都在原始数据上方,这只是由于左右不同的刻度造成的视觉差异。

尽管1.9.32.116 版本已经有了基础的支持,可以完全在同一轴上绘制,但图例标签会重复(只有标签,没有数据),容易令人困惑。
1.9.33.116 版本解决了这个问题,并允许在同一轴上完全绘制。使用模式与决定与哪些其他数据一起绘制的模式相同。看之前的代码 。

import backtrader as btcerebro = bt.Cerebro()data0 = bt.feeds.MyFavouriteDataFeed(dataname='futurename')
cerebro.adddata(data0)data1 = bt.feeds.MyFavouriteDataFeed(dataname='spotname')
data1.compensate(data0)  # let the system know ops on data1 affect data0
data1.plotinfo.plotmaster = data0
data1.plotinfo.sameaxis = True
cerebro.adddata(data1)
...cerebro.run()

data1 获得了一些plotinfo 值:

  • 在与数据0相同的空间上绘制
  • 获得使用相同轴sameaxis的设置

这种指示的原因是平台无法提前知道每个数据的比例是否兼容,这就是为什么它将在独立的尺度上绘制它们。
示例增加了一个选项,可以在同一轴上绘制。执行:

python ./future-spot.py --sameaxis

在这里插入图片描述
注意:

  • 右侧只有一个刻度
  • 现在随机数据似乎明显在原始数据周围振荡,预期的视觉效果。对比上图更准确。

2.Help

python  ./future-spot.py --help
usage: future-spot.py [-h] [--no-comp] [--sameaxis]Compensation exampleoptional arguments:-h, --help  show this help message and exit--no-comp--sameaxis

3.代码

#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015-2023 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,unicode_literals)import argparse
import random
import backtrader as bt# The filter which changes the close price
def close_changer(data, *args, **kwargs):data.close[0] += 50.0 * random.randint(-1, 1)return False  # length of stream is unchanged# override the standard markers
class BuySellArrows(bt.observers.BuySell):plotlines = dict(buy=dict(marker='$\u21E7$', markersize=12.0),sell=dict(marker='$\u21E9$', markersize=12.0))class St(bt.Strategy):def __init__(self):bt.obs.BuySell(self.data0, barplot=True)  # done here forBuySellArrows(self.data1, barplot=True)  # different markers per datadef next(self):if not self.position:if random.randint(0, 1):self.buy(data=self.data0)self.entered = len(self)else:  # in the marketif (len(self) - self.entered) >= 10:self.sell(data=self.data1)def runstrat(args=None):args = parse_args(args)cerebro = bt.Cerebro()dataname = './datas/2006-day-001.txt'  # data feeddata0 = bt.feeds.BacktraderCSVData(dataname=dataname, name='data0')cerebro.adddata(data0)data1 = bt.feeds.BacktraderCSVData(dataname=dataname, name='data1')data1.addfilter(close_changer)if not args.no_comp:data1.compensate(data0)data1.plotinfo.plotmaster = data0if args.sameaxis:data1.plotinfo.sameaxis = Truecerebro.adddata(data1)cerebro.addstrategy(St)  # sample strategycerebro.addobserver(bt.obs.Broker)  # removed below with stdstats=Falsecerebro.addobserver(bt.obs.Trades)  # removed below with stdstats=Falsecerebro.broker.set_coc(True)cerebro.run(stdstats=False)  # executecerebro.plot(volume=False)  # and plotdef parse_args(pargs=None):parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter,description=('Compensation example'))parser.add_argument('--no-comp', required=False, action='store_true')parser.add_argument('--sameaxis', required=False, action='store_true')return parser.parse_args(pargs)if __name__ == '__main__':runstrat()
  • Commissions: Stocks vs Futures 佣金:股票与期货 ,对于策略并非BT核心 。
  • Live Data Feeds and Live Trading 实时数据加载和实时交易,用不上。

偷个懒,不写了 。

算是在春节前完毕。

旧岁千般皆如意,新年万事定称心

新年快乐!

这篇关于Backtrader 文档学习- Plotting -Plotting on the same axis的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/692045

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

Python使用python-docx实现自动化处理Word文档

《Python使用python-docx实现自动化处理Word文档》这篇文章主要为大家展示了Python如何通过代码实现段落样式复制,HTML表格转Word表格以及动态生成可定制化模板的功能,感兴趣的... 目录一、引言二、核心功能模块解析1. 段落样式与图片复制2. html表格转Word表格3. 模板生

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

浅谈Redis Key 命名规范文档

《浅谈RedisKey命名规范文档》本文介绍了Redis键名命名规范,包括命名格式、具体规范、数据类型扩展命名、时间敏感型键名、规范总结以及实际应用示例,感兴趣的可以了解一下... 目录1. 命名格式格式模板:示例:2. 具体规范2.1 小写命名2.2 使用冒号分隔层级2.3 标识符命名3. 数据类型扩展命

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen