大数据【企业级360°全方位用户画像】匹配型标签累计开发

本文主要是介绍大数据【企业级360°全方位用户画像】匹配型标签累计开发,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面: 博主是一名大数据的初学者,昵称来源于《爱丽丝梦游仙境》中的Alice和自己的昵称。作为一名互联网小白,写博客一方面是为了记录自己的学习历程,一方面是希望能够帮助到很多和自己一样处于起步阶段的萌新。由于水平有限,博客中难免会有一些错误,有纰漏之处恳请各位大佬不吝赐教!个人小站:http://alices.ibilibili.xyz/ , 博客主页:https://alice.blog.csdn.net/
尽管当前水平可能不及各位大佬,但我还是希望自己能够做得更好,因为一天的生活就是一生的缩影。我希望在最美的年华,做最好的自己

        在前面的博客中,博主已经为大家带来了关于大数据【用户画像】项目匹配型标签开发的一个步骤流程(👉大数据【企业级360°全方位用户画像】匹配型标签开发)。本篇博客带来的同样是匹配型标签的开发,不同于之前的是,本次标签开发需要将最终的结果与之前的用户标签数据进行合并,而并非是覆写!

        想知道如何实现的朋友可以点个关注,我们继续往下看。
在这里插入图片描述

文章目录

    • 匹配型标签开发
    • 书写代码
      • <1>创建一个sparksession
      • <2>连接MySQL
      • <3>读取四级标签数据
      • <4> 读取五级标签数据
      • <5> 读取Hbase中的数据
      • <6> 标签匹配
      • <7>读取hbase中历史数据,与新数据合并
      • <8>将最终结果写入到Hbase(数据覆盖)
      • 过程小结
    • 小结


匹配型标签开发

        本次我们开发的仍然是匹配型标签,以Hbase中用户表的job字段为例。我们做一个用户的job标签匹配。
在这里插入图片描述
        获悉需求之后,我们在web页面上通过手动添加的方式,添加了四级标签 职业,五级标签 不同的职业名称。

在这里插入图片描述
        添加完毕,我们可以在MySQL数据库中找到对应的数据信息
在这里插入图片描述
        再去查看Hbase表中是否存在job列的数据

scan "tbl_users",{COLUMNS => "detail:job",LIMIT => 5}

在这里插入图片描述
        确认了MySQL和Hbase中都有job的数据后,我们就可以愉快地写代码了~

在这里插入图片描述

书写代码

<1>创建一个sparksession

        为了后面我们好通过观察控制台,分析数据的变化过程,我们还可以设置日志级别,减少程序运行时不必要冗余信息出现在控制台。

    // 1. 创建SparkSQL//   用于读取mysql , hbase等数据val spark: SparkSession = SparkSession.builder().appName("JobTag").master("local[*]").getOrCreate()// 设置日志级别spark.sparkContext.setLogLevel("WARN")

<2>连接MySQL

        我们肯定是需要先读取MySQL中的四级和五级的标签数据的,这里我们先进行MySQL数据库的连接。

// 设置Spark连接MySQL所需要的字段var url: String ="jdbc:mysql://bd001:3306/tags_new2?useUnicode=true&characterEncoding=UTF-8&serverTimezone=UTC&user=root&password=123456"var table: String ="tbl_basic_tag"   //mysql数据表的表名var properties:Properties = new Properties// 连接MySQLval mysqlConn: DataFrame = spark.read.jdbc(url,table,properties)

<3>读取四级标签数据

        这一步,我们正式开始读取MySQL中的四级标签数据,为了方便在其他地方调用,这里我们还创建了一个方法,用于将MySQL中的数据存入Map后又用样例类进行封装。

        需要注意的是,在进行DataSet转换成Map,或者List的时候,需导入隐式转换,不然程序会报错

   // 引入隐式转换import  spark.implicits._//引入java 和scala相互转换import scala.collection.JavaConverters._//引入sparkSQL的内置函数import org.apache.spark.sql.functions._// 3. 读取MySQL数据库的四级标签val fourTagsDS: Dataset[Row] = mysqlConn.select("id","rule").where("id=65")val KVMaps: Map[String, String] = fourTagsDS.map(row => {// 获取到rule值val RuleValue: String = row.getAs("rule").toString// 使用“##”对数据进行切分val KVMaps: Array[(String, String)] = RuleValue.split("##").map(kv => {val arr: Array[String] = kv.split("=")(arr(0), arr(1))})KVMaps}).collectAsList().get(0).toMapprintln(KVMaps)var hbaseMeta:HBaseMeta=toHBaseMeta(KVMaps)

        其中样例类代码为

  //将mysql中的四级标签的rule  封装成HBaseMeta//方便后续使用的时候方便调用def toHBaseMeta(KVMap: Map[String, String]): HBaseMeta = {//开始封装HBaseMeta(KVMap.getOrElse("inType",""),KVMap.getOrElse(HBaseMeta.ZKHOSTS,""),KVMap.getOrElse(HBaseMeta.ZKPORT,""),KVMap.getOrElse(HBaseMeta.HBASETABLE,""),KVMap.getOrElse(HBaseMeta.FAMILY,""),KVMap.getOrElse(HBaseMeta.SELECTFIELDS,""),KVMap.getOrElse(HBaseMeta.ROWKEY,""))}

<4> 读取五级标签数据

        这一步,我们通过手动添加的标签值对应的pid,将该标签下的5级标签全部获取。并将返回的每条数据封装成样例类,所有结果保存在了一个List中。

    //4. 读取mysql数据库的五级标签// 匹配职业val fiveTagsDS: Dataset[Row] = mysqlConn.select("id","rule").where("pid=65")// 将FiveTagsDS  封装成样例类TagRuleval fiveTageList: List[TagRule] = fiveTagsDS.map(row => {// row 是一条数据// 获取出id 和 ruleval id: Int = row.getAs("id").toString.toIntval rule: String = row.getAs("rule").toString// 封装样例类TagRule(id,rule)}).collectAsList()   // 将DataSet转换成util.List[TagRule]   这个类型遍历时无法获取id,rule数据.asScala.toList    // 将util.List转换成list   需要隐式转换    import scala.collection.JavaConverters._for(a<- fiveTageList){println(a.id+"      "+a.rule)}

<5> 读取Hbase中的数据

        基于第三步我们读取的四级标签的数据,我们可以通过配置信息从Hbase中读取数据,只不过跟之前一样,为了加快读取Hbase的时间,我们将其作为一个数据源来读取,而并非传统的客户端进行读取。

      // 读取hbase中的数据,这里将hbase作为数据源进行读取val hbaseDatas: DataFrame = spark.read.format("com.czxy.tools.HBaseDataSource")// hbaseMeta.zkHosts 就是 192.168.10.20  和 下面是两种不同的写法.option("zkHosts",hbaseMeta.zkHosts).option(HBaseMeta.ZKPORT, hbaseMeta.zkPort).option(HBaseMeta.HBASETABLE, hbaseMeta.hbaseTable).option(HBaseMeta.FAMILY, hbaseMeta.family).option(HBaseMeta.SELECTFIELDS, hbaseMeta.selectFields).load()// 展示一些数据hbaseDatas.show(5)//| id|job|//+---+---+//|  1|  3|//| 10|  5|//|100|  3|//|101|  1|//|102|  1|//+---+---+

<6> 标签匹配

        这一步我们需要根据hbase数据和五级标签的数据进行标签匹配。

        需要注意的是,匹配的时候需要使用到udf函数。

 // 需要自定义UDF函数val getUserTags: UserDefinedFunction = udf((rule: String) => {// 设置标签的默认值var tagId: Int = 0// 遍历每一个五级标签的rulefor (tagRule <- fiveTageList) {if (tagRule.rule == rule) {tagId = tagRule.id}}tagId})// 6、使用五级标签与Hbase的数据进行匹配获取标签val jobNewTags : DataFrame = hbaseDatas.select('id.as ("userId"),getUserTags('job).as("tagsId"))jobNewTags.show(5)//+------+------+//|userId|tagsId|//+------+------+//|     1|    68|//|    10|    70|//|   100|    68|//|   101|    66|//|   102|    66|//+------+------+

<7>读取hbase中历史数据,与新数据合并

        从这一步开始,真正与之前匹配完就完事的程序不同。我们需要将Hbase中的历史数据读取出来,与新计算的指标进行一个join合并。

        其中也需要编写udf对标签进行拼接,并对拼接后的数据进行去重处理。

    /*  定义一个udf,用于处理旧数据和新数据中的数据 */val getAllTages: UserDefinedFunction = udf((genderOldDatas: String, jobNewTags: String) => {if (genderOldDatas == "") {jobNewTags} else if (jobNewTags == "") {genderOldDatas} else if (genderOldDatas == "" && jobNewTags == "") {""} else {val alltages: String = genderOldDatas + "," + jobNewTags  //可能会出现 83,94,94// 对重复数据去重alltages.split(",").distinct // 83 94// 使用逗号分隔,返回字符串类型.mkString(",") // 83,84}})// 7、解决数据覆盖的问题// 读取test,追加标签后覆盖写入// 标签去重val genderOldDatas: DataFrame = spark.read.format("com.czxy.tools.HBaseDataSource")// hbaseMeta.zkHosts 就是 192.168.10.20  和 下面是两种不同的写法.option("zkHosts","192.168.10.20").option(HBaseMeta.ZKPORT, "2181").option(HBaseMeta.HBASETABLE, "test").option(HBaseMeta.FAMILY, "detail").option(HBaseMeta.SELECTFIELDS, "userId,tagsId").load()genderOldDatas.show(5)//+------+------+//|userId|tagsId|//+------+------+//|     1|  6,68|//|    10|  6,70|//|   100|  6,68|//|   101|  5,66|//|   102|  6,66|//+------+------+// 新表和旧表进行joinval joinTags: DataFrame = genderOldDatas.join(jobNewTags, genderOldDatas("userId") === jobNewTags("userId"))val allTags: DataFrame = joinTags.select(// 处理第一个字段when((genderOldDatas.col("userId").isNotNull), (genderOldDatas.col("userId"))).when((jobNewTags.col("userId").isNotNull), (jobNewTags.col("userId"))).as("userId"),getAllTages(genderOldDatas.col("tagsId"), jobNewTags.col("tagsId")).as("tagsId"))allTags.show()//+------+------+//|userId|tagsId|//+------+------+//|   296|  5,71|//|   467|  6,71|//|   675|  6,68|//|   691|  5,66|//|   829|  5,70|

<8>将最终结果写入到Hbase(数据覆盖)

        经过第七步数据的合并之后,我们只需将最终的结果写入到Hbase中即可。

// 将最终结果进行覆盖allTags.write.format("com.czxy.tools.HBaseDataSource").option("zkHosts", hbaseMeta.zkHosts).option(HBaseMeta.ZKPORT, hbaseMeta.zkPort).option(HBaseMeta.HBASETABLE,"test").option(HBaseMeta.FAMILY, "detail").option(HBaseMeta.SELECTFIELDS, "userId,tagsId").save()

        这个时候我们再去查询Hbase中test表的数据。

        scan "test",{LIMIT => 5}

在这里插入图片描述
        当发现每个用户都有了两个标签值时(ps:一个是上一篇文章开发的性别标签,另一个是我们本篇开发的工作标签),就说明我们标签的累计开发就成功了。

过程小结

1、为读取hbase,mysql数据,创建一个sparksession,设置appname,master
2、链接mysql数据库,设置url,tablename, properties
3、读取四级标签数据
        a)通过ID读取四级数据的rule。(ID是固定死的)
        b)创建四级标签时不要直接指定jar文件名和参数等。创建完四级标签后,开发代码后,再在四级标签中添加jar文件信息。
        c)将读取的字符串类型数据封装成样例类,以便于后续使用
                i.将字符串先按照##切分数据,再按照=切分数据
                ii.将切分后的数据封装成Map
                iii.最后将Map封装成样例类
4、读取五级标签数据
        a)读物数据中pid=XXX的数据,查询出ID和rule
        b)将id 和rule封装成样例类
        c)最终返回List内部为样例类
5、基于第三步读取的hbase表、列族、字段。到相应的表中读取字段
6、根据hbase数据和五级标签的数据进行标签匹配
        a)匹配时使用udf函数进行匹配
7、读取hbase中历史数据到程序中
        a)将历史数据和新计算出来的指标进行join.
        b)获取join后的用户ID和用户标签,编写UDF将标签进行拼接
        c)拼接后的数据需要进行去重
8、将最终拼接后的数据写入hbase(数据的覆盖)

小结

        本篇博客主要在前一篇的基础上,为大家带来了如何在已有标签的情况下进行累计开发。即将原有数据和新数据进行合并,并重写的技巧。

        如果以上过程中出现了任何的纰漏错误,烦请大佬们指正😅

        受益的朋友或对大数据技术感兴趣的伙伴记得点赞关注支持一波🙏

        希望我们都能在学习的道路上越走越远😉
在这里插入图片描述

这篇关于大数据【企业级360°全方位用户画像】匹配型标签累计开发的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689333

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则