python networkx 画关系网络图并计算中心点指标(导入CSV,txt数据;导出数据excel)

本文主要是介绍python networkx 画关系网络图并计算中心点指标(导入CSV,txt数据;导出数据excel),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

利用networkx计算社会网络中的各指标,包括中介中心度,邻近中心度、和度中心度。代码都是参考附录中的参考链接,经过修改之后包含数据的导入、建网络、画图、计算中心性指标,并且讲计算的中心性指标数据导出到excel表中。复杂的代码基本删除了,就不一一介绍了,直接附代码。


一、数据准备

节点表导入了csv文件(node test.csv)
在这里插入图片描述
边表导入了txt文件(2007 edge.txt)
在这里插入图片描述

二、导入csv、txt文件

代码如下:

import csvwith open('node test.csv','rt') as csvfile:reader = csv.DictReader(csvfile)column = [row['id'] for row in reader]
print (column)edge = []
with open('2007 edge.txt','r') as f:  data = f.readlines()  for line in data:#print (line)line = tuple(line.replace('\r','').replace('\n','').replace('\t','').split(','))edge.append(line)
print (edge)

三、画网络图

代码如下:

import networkx as nx 
import matplotlib.pyplot as plt
G = nx.DiGraph()
G.add_nodes_from(column)
G.add_weighted_edges_from(edge)nx.draw_networkx(G,pos=nx.spring_layout(G),node_size=20,node_shape='o',width=1,style='solid',font_size=8) plt.show()
#print ( G.nodes())

四、计算中心度

代码如下:

###计算统计指标#计算中介中心度
print("Betweenness centrality")
b = nx.betweenness_centrality(G)
for v in G.nodes():#print("%s %0.6r" % (v, b[v])) # %s字符串,%0.6r浮点数子6print(v, b[v])
#计算度中心度
print("Degree centrality")
d = nx.degree_centrality(G)
for v in G.nodes():print(v, d[v])
#计算紧密中心度
print("Closeness centrality")
c = nx.closeness_centrality(G)
for v in G.nodes():print(v, c[v])

五、中心度指标导出到Excel表中

代码如下:

import xlwt##导出到excel表格中#创建Workbook,相当于创建Excel
xls = xlwt.Workbook(encoding='utf-8')
#创建sheet,Sheet1为表的名字,cell_overwrite_ok为是否覆盖单元格
sheet = xls.add_sheet('sheet1', cell_overwrite_ok=True)
# 创建的文件夹,用来写入处理后的数据file = "D:\data\python\py2021815\data2017.xls"#向表中添加数据
sheet.write(0, 0,'id')
sheet.write(0, 1, "Betweenness centrality")
sheet.write(0, 2, "Degree centrality")
sheet.write(0, 3, "Closeness centrality")
m = 1
for v in G.nodes():sheet.write(m,0,v)sheet.write(m, 1, b[v])sheet.write(m, 2, d[v])sheet.write(m, 3, c[v])m = m + 1
# 保存到excel中
xls.save(file)

注意:文件保存路径和表格命名都不要使用数字开头。

六.完整代码

代码如下:

import networkx as nx 
import matplotlib.pyplot as plt
import csv
import xlwtwith open('node test.csv','rt') as csvfile:reader = csv.DictReader(csvfile)column = [row['id'] for row in reader]
#print (column)edge = []
with open('2007 edge.txt','r') as f:  data = f.readlines()  for line in data:#print (line)line = tuple(line.replace('\r','').replace('\n','').replace('\t','').split(','))edge.append(line)
#print (edge)G = nx.DiGraph()
G.add_nodes_from(column)
G.add_weighted_edges_from(edge)nx.draw_networkx(G,pos=nx.spring_layout(G),node_size=20,node_shape='o',width=1,style='solid',font_size=8) plt.show()
#print ( G.nodes())###计算统计指标#计算中介中心度
print("Betweenness centrality")
b = nx.betweenness_centrality(G)
for v in G.nodes():#print("%s %0.6r" % (v, b[v])) # %s字符串,%0.6r浮点数子6print(v, b[v])
#计算度中心度
print("Degree centrality")
d = nx.degree_centrality(G)
for v in G.nodes():print(v, d[v])
#计算紧密中心度
print("Closeness centrality")
c = nx.closeness_centrality(G)
for v in G.nodes():print(v, c[v])##导出到excel表格中#创建Workbook,相当于创建Excel
xls = xlwt.Workbook(encoding='utf-8')
#创建sheet,Sheet1为表的名字,cell_overwrite_ok为是否覆盖单元格
sheet = xls.add_sheet('sheet1', cell_overwrite_ok=True)
# 创建的文件夹,用来写入处理后的数据file = "D:\data\python\py2021815\data2017.xls"#向表中添加数据
sheet.write(0, 0,'id')
sheet.write(0, 1, "Betweenness centrality")
sheet.write(0, 2, "Degree centrality")
sheet.write(0, 3, "Closeness centrality")
m = 1
for v in G.nodes():sheet.write(m,0,v)sheet.write(m, 1, b[v])sheet.write(m, 2, d[v])sheet.write(m, 3, c[v])m = m + 1
# 保存到excel中
xls.save(file)

参考链接

Python读取csv的常用方法
【Python】Matplotlib画图(十)——基于networkx画关系网络图
用Python处理txt数据或计算数据将其转存为excel文件

总结

终于搭完了框架,后面要计算改进指标可以方便很多了,但是使用matplotlib画图不好看(具体调节网络图我还没有学…,之前吐槽Gephi不好看,但至少能连接地图,Gephi导出图折磨了我一周,为了能计算改进的指标,安装Neo4j把java给卸载了,现在也不知道还能不能再画图了。)。

这篇关于python networkx 画关系网络图并计算中心点指标(导入CSV,txt数据;导出数据excel)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688984

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财