Spark RDD分析各种类型的最喜爱电影TopN技巧

2024-02-07 15:59

本文主要是介绍Spark RDD分析各种类型的最喜爱电影TopN技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

楔子

学习《spark大数据商业实战》第12章节
通过RDD分析大数据电影点评系统各种类型的电影最喜爱电影TopN。本次分析最受男性(女性)喜爱的电影Top10

里面复用了Spark RDD实现电影流行度分析

思路

  1. 因为要使用电影数据RDD,所以复用了Spark RDD实现电影流行度分析
  2. 根据性别过滤数据
  3. 要进行join 需要key-values
  4. join之后的数据(2828,((3793,3),M)) -->(用户(电影id,评分)性别) 转换为Spark RDD实现电影流行度分析需要的格式 (电影,评分,人数) --eg (MovieID,(Rating,1))

demo lambda方式

/*** 2:最受男性欢迎的电影 和最受女性欢迎的电影(RDD方式)使用lambda简化* * @param userDF* @param ratDF*/
public static void popularByRDDSimpleness(SparkSession sparkSession, JavaRDD<String> userRdd, JavaRDD<String> ratRdd) {System.out.println("男性喜爱的10个电影 ByRDD");System.out.println(new DateTime().toString("yyyy-MMM-dd HH:mm:ss:SSS"));// UserID::GenderJavaPairRDD<String, String> user_gender = userRdd.mapToPair(t -> new Tuple2<String, String>(t.split("::")[0], t.split("::")[1]));user_gender.cache();// 评分变为 userid:(电影id,评分)JavaPairRDD<String, Tuple2<String, Long>> user_movie_rat = ratRdd.mapToPair(t -> new Tuple2<String, Tuple2<String, Long>>(t.split("::")[0], new Tuple2<String, Long>(t.split("::")[1], Long.valueOf(t.split("::")[2]))));user_movie_rat.cache();JavaPairRDD<String, Tuple2<Tuple2<String, Long>, String>> user_pairRdd = user_movie_rat.join(user_gender);// user_pairRdd.take(10).forEach(t -> System.out.println(t));// (2828,((3793,3),M))// (2828,((2997,5),M))// 从里面过滤男性JavaPairRDD<String, Tuple2<Tuple2<String, Long>, String>> filter = user_pairRdd.filter(t -> t._2._2.equals("M"));// 将上述过滤之后的结果 (userid,(电影id,评分),性别) 从新构造成 (MovieID,(Rating,1))JavaPairRDD<String, Tuple2<Long, Long>> mapToPair = filter.mapToPair(t -> new Tuple2<String, Tuple2<Long, Long>>(t._2._1._1, new Tuple2<Long, Long>(t._2._1._2, 1L)));/*** 1 所有电影中平均得分最高的Top10电影*/// step 1 把数据变为key-value ,eg (MovieID,(Rating,1))mapToPair.cache();// step 2 通过reduceByKey 汇总,key是MovieID,但是values是(评分总和,点评人数合计)JavaPairRDD<String, Tuple2<Long, Long>> reduceByKey = mapToPair.reduceByKey((a, b) -> new Tuple2<Long, Long>(a._1 + b._1, a._2 + b._2));// step 3 sortByKey(false) 倒序排列JavaPairRDD<Double, String> result = reduceByKey.mapToPair(v1 -> new Tuple2<Double, String>((v1._2._1 * 0.1 / v1._2._2), v1._1));result.sortByKey(false).take(10).forEach(t -> System.out.println(t));System.out.println(new DateTime().toString("yyyy-MMM-dd HH:mm:ss:SSS"));
}

demo SparkSQL方式

/*** 2:最受男性欢迎的电影 和最受女性欢迎的电影(Sql方式)* * @param userDF* @param ratDF*/
public static void popularBySql(SparkSession sparkSession, Dataset<Row> userDF, Dataset<Row> ratDF) {System.out.println("男性喜爱的10个电影 BySQL");System.out.println(new DateTime().toString("yyyy-MMM-dd HH:mm:ss:SSS"));// 2019-一月-03 20:10:05:305userDF.createOrReplaceTempView("t_user");ratDF.createOrReplaceTempView("t_rat");// 选择评论中是男性的评分Dataset<Row> sql = sparkSession.sql("select avg(rat) rat_avg ,MovieID from (" //+ "select r.* from t_rat r , t_user u where u.Gender='M' AND U.UserID = r.UserID )" + //"group by MovieID order by rat_avg desc limit 10");sql.show();System.out.println(new DateTime().toString("yyyy-MMM-dd HH:mm:ss:SSS"));
}

spark RDD方式

GitHub位置 方法是popularByRDD 代码太长 此处不罗列

对比RDD和SparkSQL

对比不是那么充分,仅作为一个参考。由下图发现 RDD方式 所需要的时间会短一点
在这里插入图片描述

这篇关于Spark RDD分析各种类型的最喜爱电影TopN技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688222

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

90%的人第一步就错了! 顺利登录wifi路由器后台的技巧

《90%的人第一步就错了!顺利登录wifi路由器后台的技巧》登录Wi-Fi路由器,其实就是进入它的后台管理页面,很多朋友不知道该怎么进入路由器后台设置,感兴趣的朋友可以花3分钟了解一下... 你是不是也遇到过这种情况:家里网速突然变慢、想改WiFi密码却不知道从哪进路由器、新装宽带后完全不知道怎么设置?别慌

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

录音功能在哪里? 电脑手机等设备打开录音功能的技巧

《录音功能在哪里?电脑手机等设备打开录音功能的技巧》很多时候我们需要使用录音功能,电脑和手机这些常用设备怎么使用录音功能呢?下面我们就来看看详细的教程... 我们在会议讨论、采访记录、课堂学习、灵感创作、法律取证、重要对话时,都可能有录音需求,便于留存关键信息。下面分享一下如何在电脑端和手机端上找到录音功能

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返