数学建模:数据相关性分析(Pearson和 Spearman相关系数)含python实现

本文主要是介绍数学建模:数据相关性分析(Pearson和 Spearman相关系数)含python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  相关性分析是一种用于衡量两个或多个变量之间关系密切程度的方法。相关性分析通常用于探索变量之间的关系,以及预测一个变量如何随着另一个变量的变化而变化。在数学建模中,这是常用的数据分析手段。
  相关性分析的结果通常用相关系数来表示,相关系数的取值范围为-1到1,其中1表示完全正相关,-1表示完全负相关,0表示没有相关性。
我们常用的相关系数包括:

  1. Pearson相关系数:用于衡量两个连续变量之间的线性关系。取值范围在 -1 到 1 之间,其中 -1 表示完全负相关,1 表示完全正相关,0 表示无线性关系。
  2. Spearman等级相关系数:用于衡量两个变量之间的单调关系,不要求变量呈线性关系。对于等级或顺序数据更为适用。

  在使用相关系数时,我们需要注意:样本越大,相关系数估计越稳定;有些相关系数对数据分布的假设比较敏感,确保你的数据满足相关方法的前提条件;相关性不代表因果关系,即使两个变量相关,也不能得出一个是因为另一个的结论。那么,对于这两种相关系数,我们如何选择呢?

Pearson相关系数

  Pearson相关系数是一种用于度量两个连续变量之间线性关系强度和方向的统计量。它通常用字母 τ \tau τ 表示,取值范围在 -1 到 1 之间。
  计算皮尔逊相关性时,要了解它要符合5个假设:连续变量;两个变量之间存在一定线性关系;两个变量应该大致符合正态分布;数据集中每个观测数据包括成对数据;数据集中不应包括极端异常值数据。
公式为: τ = ∑ ( x i − x ‾ ) ( y i − y ‾ ) ∑ ( x i − x ‾ ) 2 ⋅ ∑ ( y i − y ‾ ) 2 \tau=\frac {\sum(x_i-\overline x)(y_i-\overline y)}{\sqrt{\sum(x_i-\overline x)^2\cdot\sum(y_i-\overline y)^2}} τ=(xix)2(yiy)2 (xix)(yiy)  其中, x i x_i xi y i y_i yi分别是两个变量的观察值, x ‾ \overline x x y ‾ \overline y y分别是两个变量的均值。
  Pearson相关系数假设两个变量之间的关系是线性的,因此它可能不适用于非线性关系的情况。在数据中存在异常值或数据不符合正态分布的情况下,Pearson相关系数的解释力也可能受到影响。在这些情况下,Spearman等级相关系数可能更为适用,因为它们对于非线性关系和异常值更具有鲁棒性。

Spearman等级相关系数

  Spearman等级相关系数(Spearman’s rank correlation coefficient),通常用符号 ρ \rho ρ表示,是一种用于度量两个变量之间的单调关系(不一定是线性关系)的统计量。Spearman相关系数基于变量的等级或秩次而不是具体的数值。这使得它对于数据的分布形状和是否满足正态分布的要求都相对较为鲁棒。
  计算Spearman等级相关系数的步骤:对于每个变量,将其观察值按照大小进行排名,即从最小到最大依次排列,并用秩次表示;对于每一对观察值,计算其等级差(即秩次差);计算等级差的平方和;使用公式将等级差的平方和转换为Spearman相关系数。
  设 D i D_i Di为变量X和Y对应的秩次差,n为样本大小,Spearman相关系数的计算公式为: ρ = 1 − 6 ∑ D i 2 n ( n 2 − 1 ) \rho=1-\frac{6\sum D_i^2}{n(n^2-1)} ρ=1n(n21)6Di2  Spearman相关系数的取值范围在 -1 到 1 之间:当 ρ=1 时,表示存在完全的正单调关系,即一个变量的增加伴随着另一个变量的增加;当 ρ=−1 时,表示存在完全的负单调关系,即一个变量的增加伴随着另一个变量的减少;当 ρ=0 时,表示两个变量之间没有单调关系。
  Spearman相关系数对于非线性关系和异常值的敏感性相对较低,因此在数据不满足正态分布、存在异常值或者存在非线性关系的情况。

python代码实现


import pandas as pd# 示例数据
df = pd.DataFrame({'data1': [1, 2, 3, 4, 5], 'data2': [5, 4, 3, 2, 1]})# 计算 Pearson 相关系数
pearson_corr = df['data1'].corr(df['data2'])# 计算 Spearman 等级相关系数
spearman_corr = df['data1'].corr(df['data2'], method='spearman')print("Pearson 相关系数:", pearson_corr)
print("Spearman 等级相关系数:", spearman_corr)# Pearson 相关系数: -0.9999999999999999
# Spearman 等级相关系数: -0.9999999999999999

相关系数热力图:
在这里插入图片描述

这篇关于数学建模:数据相关性分析(Pearson和 Spearman相关系数)含python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/685886

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF