中科大何向南团队+快手App联合出品 KuaiRec | 快手首个稠密为99.6%的数据集 | 相关介绍、下载、处理、使用方法

本文主要是介绍中科大何向南团队+快手App联合出品 KuaiRec | 快手首个稠密为99.6%的数据集 | 相关介绍、下载、处理、使用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 数据集介绍
    • 1.1 相关链接:
    • 1.2 构建方法
    • 1.3 代表性验证
    • 1.4 相关实验
  • 2. 数据集下载
    • 2.1 big matrix
    • 2.1 small matrix
    • 2.3 item_feat
    • 2.4 social_network
    • 2.5 注意点
  • 3. 数据集处理
    • 3.1 数据集读取
    • 3.2 划分训练集测试集
    • 3.3 拼接物品属性
    • 3.4 转换成稀疏矩阵
    • 3.5 social network处理

1. 数据集介绍

在这里插入图片描述
滴滴滴!作者在5.16进行了更新,解决了1225物品没有交互的bug,还新增了超多特征!

KuaiRec是中科大与快手团队合作产出的一个稠密度高达99.6%(一般推荐系统公开数据集的稠密度在1%以下)的数据集。
本文将对KuaiRec的构建过程、相关实验、数据信息及处理使用方法等内容进行说明。
在这里插入图片描述
上图(b)为KuaiRec数据集,右下角的小矩阵是收集到的全曝光数据集;
通常来说,我们使用大矩阵训练,用小矩阵测试。
在这里插入图片描述
上图为属性信息,主要包含item feature社交网络两部分。

1.1 相关链接:

论文:https://arxiv.org/abs/2202.10842
数据:https://rec.ustc.edu.cn/share/598635c0-9585-11ec-8259-414ede1f8d4f
代码:https://chongminggao.github.io/KuaiRec/
Example:http://m6z.cn/5U6xyQ
作者主页:https://chongminggao.me/

1.2 构建方法

  • 所有数据均来源于2020年7月5日至2020年9月5日快手APP上的交互记录;
  • 用户和视频均带有快手平台标记的“高质量”标签
  • 对于缺失值(即用户未观看的其余视频),团队操纵在线推荐规则将这些视频强制推荐给用户,此过程持续了15天。
  • 小矩阵的密度为99.6%,而非100%,是因为有部分用户显式的屏蔽过某些视频作者,导致无法将这些视频曝光给用户。

1.3 代表性验证

  • Kolmogorov–Smirnov假设检验来验证了收集到的小矩阵中的用户与视频快手数据中的用户与视频有着同样的分布。即验证了小矩阵中的用户和视频具有代表性。

1.4 相关实验

作者选择用这个数据集来探究对话推荐系统中的一些关键问题,包括两方面:

  1. 首先,部分观察到的数据(有偏差和无偏差)如何影响 CRS 的评估
  2. 我们能否通过估计缺失值(即矩阵补全)来改进对部分观测数据的评估

除此之外,作者还探究了两个因素在评估中的影响

  1. 观测数据的密度:从全曝光小矩阵中采样出不同密度的数据,使得观测密度在区间:{10%,20%,…, 100%}中。
  2. 曝光偏差的种类:通过随机性采样,基于流行商品的采样,以及基于正样本的采样,分别用以模拟部分曝光中的无偏数据、流行偏差、以及正样本偏差。

2. 数据集下载

数据下载链接:https://rec.ustc.edu.cn/share/598635c0-9585-11ec-8259-414ede1f8d4f
下载并解压数据集后,data文件夹中保存的是大矩阵和小矩阵,以及属性信息。

2.1 big matrix

big matrix:即图(b)中的蓝色部分,包含了7176名用户对10729个视频的12530806条交互记录,density为13.4%
在这里插入图片描述

2.1 small matrix

small matrix:即图(b)中的红色部分,包含了1411名用户对3327个视频的4676570条交互记录,density为99.6%.
在这里插入图片描述

2.3 item_feat

item_feat:每个视频最多包含4个tags(如体育、游戏…),共有31种tags。
在这里插入图片描述

2.4 social_network

social_network: 用户社交网络数据;小矩阵中共有146名用户有社交关系,大矩阵中共有472名用户有社交关系。
在这里插入图片描述


loaddata.pyStatistic_KuaiRec.ipynb都是作者提供的加载数据集的代码
在这里插入图片描述

2.5 注意点

1.(最新版本的数据集已经修复这个bug啦) video_id = 1225是空缺值,这个video不存在任何交互记录~,处理时需要注意一下
如,负采样时:

        neg = item + 1while neg <= max_item:if neg == 1225:  # 1225 is an absent video_idneg = 1226

3. 数据集处理

3.1 数据集读取

  1. filePath改成数据集路径
filePath= "../environments/KuaishouRec/data/big_matrix.csv" # 写自己的路径
df_big = pd.read_csv(filePath)

注意一下,图中的photo_id就是csv文件中的video_id~(我下载的是老版本数据,当时还没有修改列名)
在这里插入图片描述

  1. 指定读取列,如只需要u,i,r数据:
df_big = pd.read_csv(filePath, usecols=['user_id', 'photo_id',  'watch_ratio'])

在这里插入图片描述

3.2 划分训练集测试集

因为作者给出的是一个大数据集,并没有划分训练集和测试集,需要我们自己划分;调用sklearn.model_selection import train_test_split库就可以轻松划分了。

from sklearn.model_selection import train_test_split
import os
import pandas as pdDATAPATH = "../environments/KuaishouRec/data"
filePath = os.path.join(DATAPATH, "big_matrix.csv")
trainpath = os.path.join(DATAPATH, "train_big_matrix.csv")
testpath = os.path.join(DATAPATH, "test_big_matrix.csv")# 开始读取
df_big = pd.read_csv(filePath, usecols=['user_id', 'video_id',  'watch_ratio'])
# watch_ratio控制范围
df_big.loc[df_big['watch_ratio'] > 5, 'watch_ratio'] = 5
x_train,x_test=train_test_split(df_big,test_size=0.2,random_state=2022)x_train.sort_values("user_id", inplace=True)
x_test.sort_values("user_id", inplace=True)# save
x_train.to_csv(trainpath, index=False)
x_test.to_csv(testpath, index=False)print("split dataset completed")

3.3 拼接物品属性

  1. 先读取item feature,维度为 item_num*2
 data_feat = pd.read_csv(os.path.join(DATAPATH, 'item_feat.csv'))print("number of items:", len(data_feat))
  1. 我们想转换成 item_num*4,因为每个物品最多有4个tag;因此建立一个列表list_feat,再将物品feature读进去;最后将其转换为dataframe结构。
    data_feat = pd.read_csv(os.path.join(DATAPATH, 'item_feat.csv'))print("number of items:", len(data_feat))list_feat = [0] * len(data_feat)for i in range(len(data_feat)):list_feat[i] = data_feat[str(i)]['feature_index']df_feat = pd.DataFrame(list_feat, columns=['feat0', 'feat1', 'feat2', 'feat3'], dtype=int)
  1. 这里要注意一下缺失值处理哦!因为本身就有feature0,因此我们将NAN的feature置为-1,最后再统一加一。
    df_feat.index.name = "video_id"# 本身就有feature=0的值,所以设置为-1,再整体加一df_feat[df_feat.isna()] = -1df_feat = df_feat + 1df_feat = df_feat.astype(int)

在这里插入图片描述
4. 最后我们将物品属性矩阵与大矩阵组合起来:

    # 把大矩阵和item特征组合起来df_big = df_big.join(df_feat, on=['video_id'], how="left")df_big.loc[df_big['watch_ratio'] > 5, 'watch_ratio'] = 5user_features = ["user_id"]item_features = ["video_id"] + ["feat" + str(i) for i in range(4)] + ["photo_duration"]reward_features = ["watch_ratio"]

3.4 转换成稀疏矩阵

这部分是将大矩阵处理成(u,i,r)形式。

  1. 首先将video_id user_id转成离散形式
lbe_video = LabelEncoder() # 弄成离散的
lbe_video.fit(df_big['video_id'].unique())lbe_user = LabelEncoder()
lbe_user.fit(df_big['user_id'].unique())
  1. 利用csr_matrix进行转化
 # 类似(u,i,r)mat = csr_matrix((df_big ['watch_ratio'],(lbe_user.transform(df_big ['user_id']), lbe_photo.transform(df_big ['video_id']))),shape=(df_big ['user_id'].nunique(), df_big ['video_id'].nunique())).toarray()

3.5 social network处理

以下代码是将用户社交网络处理为稀疏矩阵:

    def construct_social_mat(self):print("loading social networks...")trustNet = pd.read_csv(os.path.join(DATAPATH, 'social_network.csv'))trust_dict = dict(zip(trustNet['user_id'], trustNet['friend_list']))socialNet = sp.dok_matrix((self.n_users, self.n_users), dtype=np.int8)for user_id, friend_ids in trust_dict.items():friend_ids = friend_ids.strip('[').strip(']').split(',')for friend_id in friend_ids:socialNet[user_id, int(friend_id)] = 1return socialNet.tolil()

这篇关于中科大何向南团队+快手App联合出品 KuaiRec | 快手首个稠密为99.6%的数据集 | 相关介绍、下载、处理、使用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/685746

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可