基于蛙跳算法求解简单调度问题附matlab代码

2024-02-06 11:50

本文主要是介绍基于蛙跳算法求解简单调度问题附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机  电力系统

⛄ 内容介绍

混合蛙跳算法(Shuffled Frog Leaping Algorithm)是根据青蛙在石块上觅食时的种群分布变化而提出的算法。算法提出于2003年,时间有点久远,但相关的论文并不是特别多,仍有较大的研究和改进空间。

混合蛙跳算法( SFLA) 是一种受自然生物模仿启示而产生的基于群体的协同搜索方法。这种算法模拟青蛙群体寻找食物时,按族群分类进行思想传递的过程,将全局信息交换和局部深度搜索相结合,局部搜索使得思想在局部个体间传递,混合策略使得局部间的思想得到交换。在混合蛙跳算法中,群体( 解集) 由一群具有相同结构的青蛙( 解) 组成。整个群体被分为多个子群,不同的子群被认为是具有不同思想的青蛙的集合。子群中青蛙按照一定策略执行解空间中的局部深度搜索。在已定义的局部搜索迭代次数结束之后,思想在混合过程中进行了交换。局部搜索和混合过程一直持续到定义的收敛条件结束为止。全局信息交换和局部深度搜索的平衡策略使得算法能够跳出局部极值点,向着全局最优的方向进行,这也成为混合蛙跳算法最主要的特点.

⛄ 部分代码

%% Simple Scheduling Problem by Shuffled Frog Leaping Algorithm (SFLA)

% here are 10 jobs or tasks which should be finished in time. 

% In "CreateModel.m" file:

% p is process time for jobs 

% s is setup time matrix (spaces between boxes in plot)

% d is jobs due 

% You can change them.

% q is order of jobs

% ST is start time

% FT is finish time

% z is final cost and Cmax must be equal with it or it is a violation. 

%%------------------------------------------------------------------

clc;

clear;

close all;

%% Problem 

model=CreateModel();

CostFunction=@(s) MyCost(s,model);        % Cost Function

nVar=model.n;             % Number of Decision Variables

VarSize=[1 nVar];   % Decision Variables Matrix Size

VarMin=0;         % Lower Bound of Variables

VarMax=1;         % Upper Bound of Variables

%% SFLA Parameters

MaxIt = 100;        % Maximum Number of Iterations

nPopMemeplex = 5;                          % Memeplex Size

nPopMemeplex = max(nPopMemeplex, nVar+1);   % Nelder-Mead Standard

nMemeplex = 5;                  % Number of Memeplexes

nPop = nMemeplex*nPopMemeplex; % Population Size

I = reshape(1:nPop, nMemeplex, []);

% FLA Parameters

fla_params.q = max(round(0.3*nPopMemeplex), 2);   % Number of Parents

fla_params.alpha = 3;   % Number of Offsprings

fla_params.beta = 5;    % Maximum Number of Iterations

fla_params.sigma = 2;   % Step Size

fla_params.CostFunction = CostFunction;

fla_params.VarMin = VarMin;

fla_params.VarMax = VarMax;

%% Initialization

% Empty Individual Template

empty_individual.Position = [];

empty_individual.Cost = [];

empty_individual.Sol = [];

% Initialize Population Array

pop = repmat(empty_individual, nPop, 1);

% Initialize Population Members

for i = 1:nPop

pop(i).Position = unifrnd(VarMin, VarMax, VarSize);

[pop(i).Cost pop(i).Sol] = CostFunction(pop(i).Position);

end

% Sort Population

pop = SortPopulation(pop);

% Update Best Solution Ever Found

BestSol = pop(1);

% Initialize Best Costs Record Array

BestCosts = nan(MaxIt, 1);

%% SFLA Main Loop

for it = 1:MaxIt

fla_params.BestSol = BestSol;

% Initialize Memeplexes Array

Memeplex = cell(nMemeplex, 1);

% Form Memeplexes and Run FLA

for j = 1:nMemeplex

% Memeplex Formation

Memeplex{j} = pop(I(j, :));

% Run FLA

Memeplex{j} = RunFLA(Memeplex{j}, fla_params);

% Insert Updated Memeplex into Population

pop(I(j, :)) = Memeplex{j};

end

% Sort Population

pop = SortPopulation(pop);

% Update Best Solution Ever Found

BestSol = pop(1);

% Store Best Cost Ever Found

BestCosts(it) = BestSol.Cost;

% Show Iteration Information

disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCosts(it))]);

% Plot Best Solution

figure(1);

PlotSolution(BestSol.Sol,model);

end

%% Results

figure;

plot(BestCosts,'k', 'LineWidth', 2);

xlabel('ITR');

ylabel('Cost Value');

ax = gca; 

ax.FontSize = 14; 

ax.FontWeight='bold';

set(gca,'Color','[0.9 0.8 0.7]')

grid on;

%

BestSol.Sol

⛄ 运行结果

⛄ 参考文献

[1]贾美琪. 改进蛙跳算法求解变工时排产优化问题[D]. 沈阳建筑大学, 2019.

[2]王一凡. 基于混合蛙跳算法的半主动悬架LQG控制器设计[J]. 时代汽车, 2018(10):5.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

这篇关于基于蛙跳算法求解简单调度问题附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684224

相关文章

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

SpringBoot简单整合ElasticSearch实践

《SpringBoot简单整合ElasticSearch实践》Elasticsearch支持结构化和非结构化数据检索,通过索引创建和倒排索引文档,提高搜索效率,它基于Lucene封装,分为索引库、类型... 目录一:ElasticSearch支持对结构化和非结构化的数据进行检索二:ES的核心概念Index:

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

JAVA线程的周期及调度机制详解

《JAVA线程的周期及调度机制详解》Java线程的生命周期包括NEW、RUNNABLE、BLOCKED、WAITING、TIMED_WAITING和TERMINATED,线程调度依赖操作系统,采用抢占... 目录Java线程的生命周期线程状态转换示例代码JAVA线程调度机制优先级设置示例注意事项JAVA线程

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获