基于蛙跳算法的最优值计算matlab仿真

2024-02-06 11:50

本文主要是介绍基于蛙跳算法的最优值计算matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法描述

2.仿真效果预览

3.MATLAB核心程序

4.完整MATLAB


1.算法描述

        蛙跳算法是基于种群进化的元启发式算法之一,通过模拟自然界中青蛙觅食过程中种群所体现出的交流与合作行为,以实现对问题的求解。在一片湿地中,分布着一群青蛙,每只青蛙有自己的想法,每只青蛙的想法则被定义为一个解。每只青蛙找到食物时,都会向其周围的青蛙传递信息,从而影响周围青蛙向其靠近,形成一个子种群(模因组)。可见,湿地中青蛙种群将形成多个这样的子种群。子种群内的青蛙相互影响,从而实现组内的局部搜索。当青蛙跳跃一定次数后,为了寻找更多的食物,所有青蛙将重新混合后再次形成子种群,寻找更多的食物。至此,完成种群的一次全局搜索。子种群局部搜索与整个种群全局搜索交替进行,从而实现对问题的求解。

       蛙跳算法(SFLA)是一种全新的启发式群体进化算法,具有高效的计算性能和优良的全局搜索能力。对混合蛙跳算法的基本原理进行了阐述,针对算法局部更新策略引起的更新操作前后个体空间位置变化较大,降低收敛速度这一问题,提出了一种基于阈值选择策略的改进蛙跳算法。通过不满足阈值条件的个体分量不予更新的策略,减小了个体空间差异,从而改善了算法的性能。数值实验证明了该改进算法的有效性,并对改进算法的阈值参数进行了率定。
       SFLA由Eusuff和Lansey为解决组合优化问题于2003年最先提出。作为一种新型的仿生物学智能优化算法,SFLA 结合了基于模因(meme)进化的模因演算法(MA,memeticalgorithm)和基于群体行为的粒子群算法(PSO,particle swarm optimization)2 种群智能优化算法的优点。该算法具有概念简单,调整的参数少,计算速度快,全局搜索寻优能力强,易于实现的特点。混合蛙跳算法主要应用于解决多目标优化问题,例如水资源分配、桥墩维修、车间作业流程安排等工程实际应用问题

2.仿真效果预览

matlab2022a仿真结果如下:

3.MATLAB核心程序

..................................................................
%%产生初始青娃
F=m*n;
tic;
for i1=1:Fp(i1,:)=pmax*rands(1,d);
end
%%全局迭代寻优
yy=zeros(1,MAXGEN);
for ii=1:MAXGEN    for i2=1:Ffitness(i2)=fun(p(i2,:));end%排序,找最好的,并分组[fitsort,index]=sort(fitness);for i3=1:Fx(i3,:)=p(index(i3),:);endgx=x(1,:);%种群内最好的青娃yy(ii)=fitsort(1);% yy(ii)=fun(x(1,:));%   local=zeros(n,d);for i4=1:m local = p(i4:m:end,:);for j=1:Ne %每组青蛙迭代次数pb=local(1,:);%组内最优pw=local(n,:);%组内最差s1=rand.*(pb-pw);%采用组内最优更新s1(find(s1>smax))=smax;temp= pw+s1;temp(find(temp>pmax))=pmax;temp(find(temp<pmin))=pmin;if fun(temp) > fun(pw)s1=rand.*(gx-pw);%采用全局最优更新s1(find(s1>smax))=smax;temp=pw+s1;temp(find(temp>pmax))=pmax;temp(find(temp<pmin))=pmin;endif fun(temp)>fun(pw)s1=pmax*rands(1,d);%随机更新s1(find(s1>smax))=smax;temp=pw+s1;temp(find(temp>pmax))=pmax;temp(find(temp<pmin))=pmin;endlocal(n,:) = temp;for loc=1:nfitlocal(loc)=fun(local(loc,:));end[localsort,indexlocal]=sort(fitlocal);for loc=1:nlocalnew(loc,:) = local(indexlocal(loc),:);end    local=localnew;end   %结束Nep(i4:m:end,:) =local;end    %结束m%最好的青娃适配值 
end  %结束MAXGEN
toc
a266

4.完整MATLAB

V

这篇关于基于蛙跳算法的最优值计算matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684220

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.