基于蛙跳算法的最优值计算matlab仿真

2024-02-06 11:50

本文主要是介绍基于蛙跳算法的最优值计算matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法描述

2.仿真效果预览

3.MATLAB核心程序

4.完整MATLAB


1.算法描述

        蛙跳算法是基于种群进化的元启发式算法之一,通过模拟自然界中青蛙觅食过程中种群所体现出的交流与合作行为,以实现对问题的求解。在一片湿地中,分布着一群青蛙,每只青蛙有自己的想法,每只青蛙的想法则被定义为一个解。每只青蛙找到食物时,都会向其周围的青蛙传递信息,从而影响周围青蛙向其靠近,形成一个子种群(模因组)。可见,湿地中青蛙种群将形成多个这样的子种群。子种群内的青蛙相互影响,从而实现组内的局部搜索。当青蛙跳跃一定次数后,为了寻找更多的食物,所有青蛙将重新混合后再次形成子种群,寻找更多的食物。至此,完成种群的一次全局搜索。子种群局部搜索与整个种群全局搜索交替进行,从而实现对问题的求解。

       蛙跳算法(SFLA)是一种全新的启发式群体进化算法,具有高效的计算性能和优良的全局搜索能力。对混合蛙跳算法的基本原理进行了阐述,针对算法局部更新策略引起的更新操作前后个体空间位置变化较大,降低收敛速度这一问题,提出了一种基于阈值选择策略的改进蛙跳算法。通过不满足阈值条件的个体分量不予更新的策略,减小了个体空间差异,从而改善了算法的性能。数值实验证明了该改进算法的有效性,并对改进算法的阈值参数进行了率定。
       SFLA由Eusuff和Lansey为解决组合优化问题于2003年最先提出。作为一种新型的仿生物学智能优化算法,SFLA 结合了基于模因(meme)进化的模因演算法(MA,memeticalgorithm)和基于群体行为的粒子群算法(PSO,particle swarm optimization)2 种群智能优化算法的优点。该算法具有概念简单,调整的参数少,计算速度快,全局搜索寻优能力强,易于实现的特点。混合蛙跳算法主要应用于解决多目标优化问题,例如水资源分配、桥墩维修、车间作业流程安排等工程实际应用问题

2.仿真效果预览

matlab2022a仿真结果如下:

3.MATLAB核心程序

..................................................................
%%产生初始青娃
F=m*n;
tic;
for i1=1:Fp(i1,:)=pmax*rands(1,d);
end
%%全局迭代寻优
yy=zeros(1,MAXGEN);
for ii=1:MAXGEN    for i2=1:Ffitness(i2)=fun(p(i2,:));end%排序,找最好的,并分组[fitsort,index]=sort(fitness);for i3=1:Fx(i3,:)=p(index(i3),:);endgx=x(1,:);%种群内最好的青娃yy(ii)=fitsort(1);% yy(ii)=fun(x(1,:));%   local=zeros(n,d);for i4=1:m local = p(i4:m:end,:);for j=1:Ne %每组青蛙迭代次数pb=local(1,:);%组内最优pw=local(n,:);%组内最差s1=rand.*(pb-pw);%采用组内最优更新s1(find(s1>smax))=smax;temp= pw+s1;temp(find(temp>pmax))=pmax;temp(find(temp<pmin))=pmin;if fun(temp) > fun(pw)s1=rand.*(gx-pw);%采用全局最优更新s1(find(s1>smax))=smax;temp=pw+s1;temp(find(temp>pmax))=pmax;temp(find(temp<pmin))=pmin;endif fun(temp)>fun(pw)s1=pmax*rands(1,d);%随机更新s1(find(s1>smax))=smax;temp=pw+s1;temp(find(temp>pmax))=pmax;temp(find(temp<pmin))=pmin;endlocal(n,:) = temp;for loc=1:nfitlocal(loc)=fun(local(loc,:));end[localsort,indexlocal]=sort(fitlocal);for loc=1:nlocalnew(loc,:) = local(indexlocal(loc),:);end    local=localnew;end   %结束Nep(i4:m:end,:) =local;end    %结束m%最好的青娃适配值 
end  %结束MAXGEN
toc
a266

4.完整MATLAB

V

这篇关于基于蛙跳算法的最优值计算matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684220

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

Python中经纬度距离计算的实现方式

《Python中经纬度距离计算的实现方式》文章介绍Python中计算经纬度距离的方法及中国加密坐标系转换工具,主要方法包括geopy(Vincenty/Karney)、Haversine、pyproj... 目录一、基本方法1. 使用geopy库(推荐)2. 手动实现 Haversine 公式3. 使用py

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ