C++ 遗传学SFLA混合蛙跳算法

2024-02-06 11:50

本文主要是介绍C++ 遗传学SFLA混合蛙跳算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蛙跳算法(Shuffled Frog Leading Algorithm)是一种启发式算法,通过启发式函数进行启发式搜索,从而找到组合最优问题的解。

他结合了以遗传为基础的memetic算法和以社会行为为基础的粒子群优化算法的优点。也可以说SFLA=SCE+PSO

一、问题概念:

蛙跳算法的思想是:在一片湿地中生活着一群青蛙。湿地内离散的分布着许多石头,青蛙通过寻找不同的石头进行跳跃去找到食物较多的地方。每只青蛙个体之间通过文化的交流实现信息的交换。每只青蛙都具有自己的文化。每只青蛙的文化被定义为问题的一个解。湿地的整个青蛙群体被分为不同的子群体,每个子群体有着自己的文化,执行局部搜索策略。在子群体中的每个个体有着自己的文化,并且影响着其他个体,也受其他个体的影响,并随着子群体的进化而进化。当子群体进化到一定阶段以后,各个子群体之间再进行思想的交流(全局信息交换)实现子群体间的混合运算,一直到所设置的条件满足为止。


二、解决思路:

在SFLA中,种群被分为若干个子群(memeplex),每一个子群包括一定数量的青蛙。不同的memeplex具有不同的文化,分别进行局部搜索。在每个子群中,每只青蛙都有自己的想法,并且受到其他青蛙想法的影响,通过memetic进化来发展。这样经过一定的memetic进化以及跳跃过程,这些想法思路就在各个memeplex中传播开来,然后,据需局部搜索和跳跃,知道收敛或满足标准为止。


可以这样理解,所有的个体(青蛙)都在朝向相对更优的解进化,然后经过给定的周期(设置的迭代次数)后,再看其所有个体的进化程度。算法的思想是每个个体所含在的基因都朝向一个目标发展(子群最优、全局最优),就像我们会向更优秀的人索取经验、期望和更优秀的人保持更多的相同点一个道理。


三、基本参数

蛙群的数量;
族群的数量;
族群中青蛙的数量;
最大允许跳动步长;
全局最好解;
局部最好解;
局部最差解;
子族群中青蛙的数量;
局部元进化次数;
全局思想交流次数等。


四、算法实现


4.1 初始化

定义基本参数

#define G 100  /*混合迭代次数*/
#define M 3 /*族群数*/
#define I 5 /*一个族群中的个体数*/
#define P M*I /*个体总数*/
#define V 20 /*个体基因维数*/
#define N 10 /*族群内更新次数*/
#define MAX 1000.0/*随机最大值*/
#define MIN -1000.0/*随机最小值*/
#define D 2.0 /*蛙跳的最大值*/
#define R (rand()%100)/100.0
typedef struct {double d[V];double value;
}Individal;
Individal pw[M];/*族群中个体最差*/
Individal pb[M];/*族群中个体最好*/
Individal pg;/*全体中最好*/
Individal group[P];/*整体*/
Individal memeplex[M][I];/*族群*/

生成蛙群,每只蛙个体包括基因维数数组以及价值(适应度)

double fitness(Individal individal)
{int i;double sum = 0;for (i = 0; i<V - 1; i++){sum += pow(individal.d[0] - 0, 2);}return sum;
}void init()
{int i, j;for (i = 0; i<P; i++){for (j = 0; j<V; j++){group[i].d[j] = R*(MAX - MIN) + MIN;}group[i].value = fitness(group[i]);}
}
注:为了观察进化效率,这里我们暂时用差值平方代表适应度


4.2个体排序分组

对青蛙划分等级。将青蛙按照性能的好坏依次排列,生成数组:记录最好青蛙pg,同时对其进行分组(将数组group分成为m个memeplex)

void sort()
{int i, j, k;qsort(group, P, sizeof(Individal), mycmp);k = 0;/*分组*/for (i = 0; i<I; i++){for (j = 0; j<M; j++){memeplex[j][i] = group[k];k++;}}pg = group[P - 1];for (i = 0; i<M; i++){pw[i] = memeplex[i][0];pb[i] = memeplex[i][I - 1];}
}

4.3组内进化(memetic)

4.3.1:设定最大进化次数N,iN=0为进化次数变量,子群个数m,im=0为子群计数变量。在每个memeplex中Pb和Pw分别表示性能最好和最坏的青蛙,Pg表示整个种群中最好的青蛙。在每一轮的进化中,改善最坏青蛙Pw的位置。注意,并非对所有青蛙都优化。
4.3.2:调整最坏青蛙的位置,方法如下:
     青蛙移动的距离   Di=rand()*(Pb-Pw)
     新的位置  Pw=Pw(当前位置)+Di,(Dmax>=Di>=-Dmax)
     其中rand()是0-1之间的随机数,Dmax是青蛙移动的最大距离。
4.3.3:如果上述过程能够使得青蛙有一个更好的位置,即能产生一个更好的解,那么就用新的位置青蛙取代原来的青蛙;否则,用Pg代替Pb,重复上述过程。
4.4.4:如果上述方法仍不能生成更好的青蛙,那么就随机生成一个新解取代原来最坏的青蛙Pw。


int mycmp(const void *a, const void *b) {return (*(Individal*)b).value > (*(Individal*)a).value ?1:-1;
}


void memetic()
{int i, j, k, l, n;double a,b;for (n = 0; n<N; n++){for (i = 0; i<M; i++){Individal temp[M];for (j = 0; j<V; j++){temp[i].d[j] = R*(pb[i].d[j] - pw[i].d[j]);temp[i].d[j] = temp[i].d[j] > D ? D : temp[i].d[j];temp[i].d[j] = temp[i].d[j] < -D ? -D : temp[i].d[j];temp[i].d[j] += pw[i].d[j];}temp[i].value = fitness(temp[i]);if (temp[i].value<pw[i].value)// 子群最好的{memeplex[i][0] = temp[i];qsort(memeplex[i], I, sizeof(Individal), mycmp);pw[i] = memeplex[i][0];pb[i] = memeplex[i][I - 1];}else{for (k = 0; k<V; k++){temp[i].d[k] = R*(pg.d[k] - pw[i].d[k]);temp[i].d[j] = temp[i].d[j] > D ? D : temp[i].d[j];temp[i].d[j] = temp[i].d[j] < -D ? -D : temp[i].d[j];temp[i].d[k] += pw[i].d[k];}temp[i].value = fitness(temp[i]);if (temp[i].value<pw[i].value)//整体最好的{memeplex[i][0] = temp[i];qsort(memeplex[i], I, sizeof(Individal), mycmp);pw[i] = memeplex[i][0];pb[i] = memeplex[i][I - 1];}else                     //随机解{for (l = 0; l<V; l++){memeplex[i][0].d[l] = R*(MAX - MIN) + MIN;}memeplex[i][0].value = fitness(memeplex[i][0]);qsort(memeplex[i], I, sizeof(Individal), mycmp);pw[i] = memeplex[i][0];pb[i] = memeplex[i][I - 1];}}}}
}


4.种群迭代

青蛙在memeplex之间跳跃。在每个memeplex中执行了一定的memetic进化之后,将各个子群合并到整体,再重新排序,并更新种群中最好的青蛙Pg
如果迭代终止条件满足,则停止;否则,继续迭代.一般情况下,当执行了一定次数的循环进化,代表最好解的青蛙的位置不再改变的时候,算法停止。

void renew()
{int i, j, k;i = 0;for (j = 0; j<M; j++){for (k = 0; k<I; k++){group[i] = memeplex[j][k];i++;}}
}

外部迭代循环:

	for (int i = 0; i<G; i++){sort();memetic();renew();}



五、参考流程图





六、测试截图

void test()
{init();for (int i = 0; i<G; i++){sort();memetic();renew();}pg = group[P - 1];printf("the best is:%f\n", pg.value);//for (int i = 0; i<V; i++)//{//	printf("d[(%d)]=%f\n", i, pg.d[i]);//}}void main()
{int n = 10;while (n--){test();}system("pause");
}



参考学习网址:

https://wenku.baidu.com/view/f91e94ec011ca300a6c390b4.html

http://blog.csdn.net/yi_tech_blog/article/details/53261323

http://www.cnblogs.com/tomatokely/p/7552678.html



这篇关于C++ 遗传学SFLA混合蛙跳算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/sm9sun/article/details/78297222
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/684218

相关文章

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函