【动态规划】【图论】【C++算法】1928规定时间内到达终点的最小花费

本文主要是介绍【动态规划】【图论】【C++算法】1928规定时间内到达终点的最小花费,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

【动态规划】【状态压缩】【2次选择】【广度搜索】1494. 并行课程 II

本文涉及知识点

动态规划汇总

LeetCode1928. 规定时间内到达终点的最小花费

一个国家有 n 个城市,城市编号为 0 到 n - 1 ,题目保证 所有城市 都由双向道路 连接在一起 。道路由二维整数数组 edges 表示,其中 edges[i] = [xi, yi, timei] 表示城市 xi 和 yi 之间有一条双向道路,耗费时间为 timei 分钟。两个城市之间可能会有多条耗费时间不同的道路,但是不会有道路两头连接着同一座城市。
每次经过一个城市时,你需要付通行费。通行费用一个长度为 n 且下标从 0 开始的整数数组 passingFees 表示,其中 passingFees[j] 是你经过城市 j 需要支付的费用。
一开始,你在城市 0 ,你想要在 maxTime 分钟以内 (包含 maxTime 分钟)到达城市 n - 1 。旅行的 费用 为你经过的所有城市 通行费之和 (包括 起点和终点城市的通行费)。
给你 maxTime,edges 和 passingFees ,请你返回完成旅行的 最小费用 ,如果无法在 maxTime 分钟以内完成旅行,请你返回 -1 。
示例 1:
输入:maxTime = 30, edges = [[0,1,10],[1,2,10],[2,5,10],[0,3,1],[3,4,10],[4,5,15]], passingFees = [5,1,2,20,20,3]
输出:11
解释:最优路径为 0 -> 1 -> 2 -> 5 ,总共需要耗费 30 分钟,需要支付 11 的通行费。
示例 2:
输入:maxTime = 29, edges = [[0,1,10],[1,2,10],[2,5,10],[0,3,1],[3,4,10],[4,5,15]], passingFees = [5,1,2,20,20,3]
输出:48
解释:最优路径为 0 -> 3 -> 4 -> 5 ,总共需要耗费 26 分钟,需要支付 48 的通行费。
你不能选择路径 0 -> 1 -> 2 -> 5 ,因为这条路径耗费的时间太长。
示例 3:
输入:maxTime = 25, edges = [[0,1,10],[1,2,10],[2,5,10],[0,3,1],[3,4,10],[4,5,15]], passingFees = [5,1,2,20,20,3]
输出:-1
解释:无法在 25 分钟以内从城市 0 到达城市 5 。
提示:
1 <= maxTime <= 1000
n == passingFees.length
2 <= n <= 1000
n - 1 <= edges.length <= 1000
0 <= xi, yi <= n - 1
1 <= timei <= 1000
1 <= passingFees[j] <= 1000
图中两个节点之间可能有多条路径。
图中不含有自环。

动态规划

路径中不会有重复节点,否则去掉环,用时更少,过路费更少或不变。

动态规划的状态表示

dp[i][j] 表示 消耗j单位时间到达i城市的最小过路非。所有相同时间的状态全部更新完时间复杂度是O(n),时间数是maxTime。故总时间复杂度是:O(n*maxTime)。

动态规划的转移方程

前置状态转移后置状态。
dp[i][j] 更 新 k 和 i 连接 \Large更新 _{k和i连接} ki连接 dp[k][j+ik需要的时间] =min(,dp[i][j]+pass[k]

动态规划的初始值

dp[0][0]=第一个城市的过路费 其它状态全部为2e6。

动态规划的填表顺序

时间从0到大。

动态规划的返回值

dp.back()的最小值。

代码

class Solution {
public:int minCost(int maxTime, vector<vector<int>>& edges, vector<int>& passingFees) {m_c = passingFees.size();CNeiBo3 neiBo(m_c, edges,false);vector<vector<int>> dp(m_c, vector<int>(maxTime + 1, m_iNotMay));dp[0][0] = passingFees[0];for (int time = 0; time < maxTime; time++){for (int pos = 0; pos < m_c; pos++){for (const auto& [next,useTime] : neiBo.m_vNeiB[pos]){const int newTime = time + useTime;if (newTime <= maxTime){const int newFees = dp[pos][time] + passingFees[next];if (newFees < dp[next][newTime]){dp[next][newTime] = newFees;}}}}}const int iMin = *std::min_element(dp.back().begin(), dp.back().end());return (iMin >= m_iNotMay) ? -1 : iMin;}int m_c;const int m_iNotMay = 2000'000;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	int maxTime;vector<vector<int>> edges;vector<int> passingFees;{Solution sln;maxTime = 30, edges = { {0,1,10},{1,2,10},{2,5,10},{0,3,1},{3,4,10},{4,5,15} }, passingFees = { 5,1,2,20,20,3 };auto res = sln.minCost(maxTime, edges, passingFees);Assert(res,11);}{Solution sln;maxTime = 29, edges = { {0,1,10},{1,2,10},{2,5,10},{0,3,1},{3,4,10},{4,5,15} }, passingFees = { 5,1,2,20,20,3 };auto res = sln.minCost(maxTime, edges, passingFees);Assert(res, 48);}{Solution sln;maxTime = 25, edges = { {0,1,10},{1,2,10},{2,5,10},{0,3,1},{3,4,10},{4,5,15} }, passingFees = { 5,1,2,20,20,3 };auto res = sln.minCost(maxTime, edges, passingFees);Assert(res, -1);}
}

2023年2月版

class Solution {
public:
int minCost(int maxTime, vector<vector>& edges, vector& passingFees) {
m_c = passingFees.size();
m_mDirectTime.resize(m_c);
for (const auto& v : edges)
{
if (v[2] > maxTime)
{
continue;
}
if (0 != m_mDirectTime[v[0]][v[1]] )
{
if (m_mDirectTime[v[0]][v[1]] < v[2])
{
continue;
}
}
m_mDirectTime[v[0]][v[1]] = v[2];
m_mDirectTime[v[1]][v[0]] = v[2];
}
dp.assign(maxTime+1, vector(m_c, m_iNotMay));
dp[0][0] = passingFees[0];
for (int iTime = 0; iTime <= maxTime; iTime++)
{
for (int iPos = 0; iPos < m_c; iPos++)
{
const int& iCurFees = dp[iTime][iPos];
if (m_iNotMay == iCurFees)
{
continue;
}
for (auto it : m_mDirectTime[iPos] )
{
const int iNewTime = iTime + it.second;
if (iNewTime > maxTime)
{
continue;
}
int& iNewFees = dp[iNewTime][it.first];
iNewFees = min(iNewFees, iCurFees + passingFees[it.first]);
}
}
}
int iMinFeel = INT_MAX;
for (auto& v : dp)
{
iMinFeel = min(iMinFeel, v[m_c - 1]);
}
return ( m_iNotMay == iMinFeel) ? -1 : iMinFeel;
}
int m_c;
vector<vector> dp;
vector<std::unordered_map<int, int>> m_mDirectTime;
const int m_iNotMay = 1000 * 1000 * 1000;

};

2023年7月版

class Solution {
public:
int minCost(int maxTime, vector<vector>& edges, vector& passingFees) {
m_c = passingFees.size();
vector<vector> vTimeNodeToMinCost(maxTime + 1, vector(m_c, INT_MAX));
vTimeNodeToMinCost[0][0] = passingFees[0];
for (int time = 1; time <= maxTime; time++)
{
for (const auto& v : edges)
{
Do(v[0], v[1], v[2], time, vTimeNodeToMinCost, passingFees);
Do(v[1], v[0], v[2], time, vTimeNodeToMinCost, passingFees);
}
}
int iMinCost = INT_MAX;
for (const auto& v : vTimeNodeToMinCost)
{
iMinCost = min(iMinCost, v.back());
}
return (INT_MAX == iMinCost) ? -1 : iMinCost;
}
void Do(int pre, int cur, int iUseTime,int time, vector<vector>& vTimeNodeToMinCost, const vector& passingFees)
{
int preTime = time - iUseTime;
if (preTime < 0)
{
return;
}
const int preMinCost = vTimeNodeToMinCost[preTime][pre];
if (INT_MAX == preMinCost)
{
return;
}
vTimeNodeToMinCost[time][cur] = min(vTimeNodeToMinCost[time][cur], preMinCost + passingFees[cur]);
}

int m_c;
vector < vector<pair<int, int>>> m_vNeiB;
int m_iMinCost = INT_MAX;
int m_iMaxTime;

};

2023年9月

class Solution {
public:
int minCost(int maxTime, vector<vector>& edges, vector& passingFees) {
m_iCityNum = passingFees.size();
std::unordered_map<int, int> mNodeNodeToTime[1001];
for (const auto& v : edges)
{
if (!mNodeNodeToTime[v[0]].count(v[1]) || (mNodeNodeToTime[v[0]][v[1]] > v[2]))
{
mNodeNodeToTime[v[0]][v[1]] = v[2];
mNodeNodeToTime[v[1]][v[0]] = v[2];
}
}
for (int i = 0; i < m_iCityNum; i++)
{
m_vNeiBo[i] = vector<pair<int, int>>(mNodeNodeToTime[i].begin(), mNodeNodeToTime[i].end());
}
return Do(maxTime, passingFees);
}
int Do(int maxTime, vector& passingFees)
{
vector vMinFee(m_iCityNum,INT_MAX);
std::priority_queue<tuple<int, int, int>, vector<tuple<int, int, int>>, std::greater<>> minHeap;
minHeap.emplace(0, 0, passingFees[0]);//总耗时,当前城市,最小消耗
while (minHeap.size())
{
const auto [time, city, fee] = minHeap.top();
minHeap.pop();
if (vMinFee[city] <= fee)
{
continue;
}
else
{
vMinFee[city] = fee;
}
for (const auto& [next, useTime] : m_vNeiBo[city])
{
const int iNewTime = time + useTime;
if (iNewTime > maxTime)
{
continue;
}
const int iNewFee = fee + passingFees[next];
minHeap.emplace(iNewTime, next, iNewFee);
}
}
return ( INT_MAX == vMinFee[m_iCityNum-1] ) ? -1 : vMinFee[m_iCityNum - 1];
}
vector<pair<int, int>> m_vNeiBo[1001];
int m_iCityNum;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【动态规划】【图论】【C++算法】1928规定时间内到达终点的最小花费的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684107

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、