基于深度学习的SSVEP分类算法简介

2024-02-05 06:28

本文主要是介绍基于深度学习的SSVEP分类算法简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于深度学习的SSVEP分类算法简介

  • 1、目标与范畴
  • 2、深度学习的算法介绍
  • 3、参考文献

1、目标与范畴

稳态视觉诱发电位(SSVEP)是指当受试者持续注视固定频率的闪光或翻转刺激时,在大脑枕-额叶区域诱发的与刺激频率相关的电生理信号。与P300、运动想像(MI)和其他脑电图信号相比,SSVEP具有更高的信噪比,可以产生更高的ITR,使其成为长期以来最有前途的脑电图范式之一。然而,传统的信号处理算法在解码SSVEP信号时依赖于手动特征提取,在各种极端情况下(数据长度短、刺激数目多、校准数据量小)性能较差,无法满足行业的实际需求。深度学习技术作为人工智能的主要研究分支之一,已被应用于计算机视觉、自然语言处理、推荐系统等各个领域的研究。由于其强大的特征表达能力和极高的灵活性,它颠覆了这些领域的算法设计思想,并取得了显著的成果。

近年来,随着深度学习技术在脑机接口领域的各个方面都具有不错的应用前景,并取得了十分可观的实验效果,从而逐渐受到脑机接口领域研究人员的青睐。SSVEP-BCI系统的研究者们也把握了这个时代机遇,开始尝试探索使用深度学习技术研发SSVEP频率识别算法。因此,本文致力于追踪与介绍前沿研究者们提出的基于深度学习的SSVEP信号识别方法,并提供复现他们模型的Python实现代码。复现的方法包括EEGNet1-2、C-CNN3、FBtCNN4、ConvCA5、SSVEPNet6和SSVEPformer7。代码里使用了Nankanish Masaki在Github上提供的12分类公共数据集8评估模型性能。

2、深度学习的算法介绍

  • EEGNet: EEGNet是一种专门为处理脑电信号数据而设计的卷积神经网络模型,它接收时域脑电数据作为网络输入。EEGNet由4层组成。第一层是卷积层,用于模拟对每个通道数据进行的带通滤波操作。第二层是空间滤波层,通过深度卷积对每个通道的数据进行加权。第三层是用于提取类别信息的独立卷积层。第四层是用于分类的完全连接层。自提出以来,EEGNet已被用于各种脑电任务,如运动图像、P300、SSVEP等 1-2
    在这里插入图片描述

  • CCNN: CCNN也是一个卷积神经网络模型。不同的是,C-CNN使用富含振幅和相位信息的频域数据作为网络输入。值得注意的是,为了获得网络的输入,CCNN使用了基于填充的FFT算法,该算法可以获得任何数据长度的220个数据点,包括110个实部数据和110个虚部数据。CCNN网络结构由两个卷积层和一个完全连接层组成。第一卷积层是空间滤波层,第二卷积层是时间滤波层,全连接层用于分类。CCNN的出现表明光谱数据有利于SSVEP的分类3
    在这里插入图片描述

  • FBtCNN: 对于SSVEP频率识别过程中,在频域输入的范式下,短期窗口下的特征可能不明显,每个通道的时间差异可能被忽略。考虑到谐波信息中嵌入了大量关于频率识别的有效信息,研究人员提出了一种基于滤波器组技术的CNN架构,称为FBtCNN。FBtCNN使用时域信号作为网络输入,并使用滤波器组融合来自不同频带的特征信息,以提高网络的分类性能4
    在这里插入图片描述

  • ConvCA: 从不同电极通道收集的SSVEP信号彼此具有非线性关系,因此来自多个通道的EEG信号的线性组合可能不是对SSVEP进行分类的最准确的解决方案。为了进一步提高SSVEP-BCI的性能,研究人员提出了一种基于CNN的非线性相关分析网络,称为ConvCA。ConvCA有两个分支,一个是将多通道脑电图信号降级为单通道脑电图信号的信号网络,另一个是把多通道参考信号解释为单通道参考信号的参考网络。ConvCA通过分析信号网络输出和参考网络输出之间的相关性来完成SSVEP的分类过程5
    在这里插入图片描述

  • SSVEPNet: SSVEPNet是卷积神经网络和长短期记忆网络的混合网络模型,接受时域数据作为网络输入。SSVEPNet由三部分组成:卷积神经网络、长短期记忆网络和全连接网络。其中,CNN用于提取脑电的时空特征,双向LSTM用于基于时空特征之间的依赖性进行编码,由三个全连接层组成的全连接网络用于最终分类。此外,为了抑制网络训练过程中可能出现的过拟合,在网络实现过程中结合了频谱归一化标签平滑技术,进一步提高了模型的泛化能力。即使只有少量的校准数据,SSVEPNet仍然可以实现非常好的分类性能,并且这一特性已经在4类、12类和40类数据集上得到了验证6
    在这里插入图片描述

  • SSVEPformer: 基于注意力机制的Transformer已被应用至计算机视觉、自然语言处理等多个领域,并取得了举世瞩目的成果。近年来,Transformer也逐渐被引入至脑电信号的解码分析中来,揭示了Transformer应用至SSVEP-BCI系统的潜在可能性。正愁于当前SSVEP解码算法依赖于大量的被试校准数据,研究者们提出了基于Transformer的SSVEP分类网络SSVEPformer以实现零校准高性能网络。SSVEPformer与C-CNN的网络输入一致,使用频域信号作为输入,并结合CNN与MLP网络完成Transformer的特征编码与注意力学习过程。SSVEPformer可以在跨被试实验中取得十分可观的分类性能,显著优于其它分类网络。此外,结合滤波器组技术,研究者们提出了改进版网络FB-SSVEPformer,以进一步地提升网络性能。

在这里插入图片描述
所有深度学习模型的实现代码: https://github.com/YuDongPan/DL_Classifier

3、参考文献


  1. Lawhern V J, Solon A J, Waytowich N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces[J]. Journal of neural engineering, 2018, 15(5): 056013. https://iopscience.iop.org/article/10.1088/1741-2552/aace8c/meta ↩︎ ↩︎

  2. Waytowich N, Lawhern V J, Garcia J O, et al. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials[J]. Journal of neural engineering, 2018, 15(6): 066031. https://iopscience.iop.org/article/10.1088/1741-2552/aae5d8/meta ↩︎ ↩︎

  3. Ravi A, Beni N H, Manuel J, et al. Comparing user-dependent and user-independent training of CNN for SSVEP BCI[J]. Journal of neural engineering, 2020, 17(2): 026028. https://iopscience.iop.org/article/10.1088/1741-2552/ab6a67/meta ↩︎ ↩︎

  4. Ding W, Shan J, Fang B, et al. Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 2615-2624. https://ieeexplore.ieee.org/abstract/document/9632600/ ↩︎ ↩︎

  5. Li Y, Xiang J, Kesavadas T. Convolutional correlation analysis for enhancing the performance of SSVEP-based brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 2681-2690. https://ieeexplore.ieee.org/abstract/document/9261605/ ↩︎ ↩︎

  6. Pan Y, Chen J, Zhang Y, et al. An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition[J]. Journal of Neural Engineering, 2022, 19(5): 056014. https://iopscience.iop.org/article/10.1088/1741-2552/ac8dc5/meta ↩︎ ↩︎

  7. Chen J, Zhang Y, Pan Y, et al. A Transformer-based deep neural network model for SSVEP classification[J]. Neural Networks, 2023, 164: 521-534. https://www.sciencedirect.com/science/article/abs/pii/S0893608023002319 ↩︎

  8. Nakanishi M, Wang Y, Wang Y T, et al. A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials[J]. PloS one, 2015, 10(10): e0140703. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140703 ↩︎

这篇关于基于深度学习的SSVEP分类算法简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/679991

相关文章

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和