MMLAB的实例分割算法mmsegmentation

2024-02-05 04:12

本文主要是介绍MMLAB的实例分割算法mmsegmentation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        当谈及实例分割时,人们往往只会提到一些早期的经典算法,比如 PSP-Net、DeepLabv3、DeepLabv3+ 和 U-Net。然而,实例分割领域已经在过去的五六年中蓬勃发展,涌现出许多新的算法。今天,让我们一起探索这个算法库,它包含了众多最新的实例分割算法。后面,我将会为大家详细介绍如何使用这个算法库。总的来说,若你关注实例分割领域的最新进展,这个算法库值得你拥有。

1、目前支持的算法:


- [x] [SAN (CVPR'2023)](configs/san/)
- [x] [VPD (ICCV'2023)](configs/vpd)
- [x] [DDRNet (T-ITS'2022)](configs/ddrnet)
- [x] [PIDNet (ArXiv'2022)](configs/pidnet)
- [x] [Mask2Former (CVPR'2022)](configs/mask2former)
- [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
- [x] [K-Net (NeurIPS'2021)](configs/knet)
- [x] [SegFormer (NeurIPS'2021)](configs/segformer)
- [x] [Segmenter (ICCV'2021)](configs/segmenter)
- [x] [DPT (ArXiv'2021)](configs/dpt)
- [x] [SETR (CVPR'2021)](configs/setr)
- [x] [STDC (CVPR'2021)](configs/stdc)
- [x] [BiSeNetV2 (IJCV'2021)](configs/bisenetv2)
- [x] [CGNet (TIP'2020)](configs/cgnet)
- [x] [PointRend (CVPR'2020)](configs/point_rend)
- [x] [DNLNet (ECCV'2020)](configs/dnlnet)
- [x] [OCRNet (ECCV'2020)](configs/ocrnet)
- [x] [ISANet (ArXiv'2019/IJCV'2021)](configs/isanet)
- [x] [Fast-SCNN (ArXiv'2019)](configs/fastscnn)
- [x] [FastFCN (ArXiv'2019)](configs/fastfcn)
- [x] [GCNet (ICCVW'2019/TPAMI'2020)](configs/gcnet)
- [x] [ANN (ICCV'2019)](configs/ann)
- [x] [EMANet (ICCV'2019)](configs/emanet)
- [x] [CCNet (ICCV'2019)](configs/ccnet)
- [x] [DMNet (ICCV'2019)](configs/dmnet)
- [x] [Semantic FPN (CVPR'2019)](configs/sem_fpn)
- [x] [DANet (CVPR'2019)](configs/danet)
- [x] [APCNet (CVPR'2019)](configs/apcnet)
- [x] [NonLocal Net (CVPR'2018)](configs/nonlocal_net)
- [x] [EncNet (CVPR'2018)](configs/encnet)
- [x] [DeepLabV3+ (CVPR'2018)](configs/deeplabv3plus)
- [x] [UPerNet (ECCV'2018)](configs/upernet)
- [x] [ICNet (ECCV'2018)](configs/icnet)
- [x] [PSANet (ECCV'2018)](configs/psanet)
- [x] [BiSeNetV1 (ECCV'2018)](configs/bisenetv1)
- [x] [DeepLabV3 (ArXiv'2017)](configs/deeplabv3)
- [x] [PSPNet (CVPR'2017)](configs/pspnet)
- [x] [ERFNet (T-ITS'2017)](configs/erfnet)
- [x] [UNet (MICCAI'2016/Nat. Methods'2019)](configs/unet)
- [x] [FCN (CVPR'2015/TPAMI'2017)](configs/fcn)

方法

时间

题目

dsdl

Standard Description Language for DataSet

san

2013

Side adapter network for open-vocabulary semantic segmentation

unet

2015

U-net: Convolutional networks for biomedical image segmentation

erfnet

2017

Erfnet: Efficient residual factorized convnet for real-time semantic segmentation

fcn

2017

Fully convolutional networks for semantic segmentation

pspnet

2017

Pyramid Scene Parsing Network

bisenetv1_r18-d32

2018

Bisenet: Bilateral segmentation network for real-time semantic segmentation

encnet

2018

Context Encoding for Semantic Segmentation

icnet_r50-d8

2018

Icnet for real-time semantic segmentation on high-resolution images

nonlocal

2018

Non-local neural networks

psanet

2018

Psanet: Point-wise spatial attention network for scene parsing

upernet

2018

Unified perceptual parsing for scene understanding

ann

2019

Asymmetric non-local neural networks for semantic segmentation

apcnet

2019

Adaptive Pyramid Context Network for Semantic Segmentation

ccnet

2019

CCNet: Criss-Cross Attention for Semantic Segmentation

danet

2019

Dual Attention Network for Scene Segmentation

emanet_r50-d8

2019

Expectation-maximization attention networks for semantic segmentation

fastfcn

2019

Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation

fast_scnn

2019

Fast-scnn: Fast semantic segmentation network

hrnet

2019

Deep High-Resolution Representation Learning for Human Pose Estimation

gcnet

2019

Gcnet: Non-local networks meet squeeze-excitation networks and beyond

sem_fpn

2019

Panoptic feature pyramid networks

cgNet

2020

Cgnet: A light-weight context guided network for semantic segmentation

dnlnet

2020

Disentangled Non-Local Neural Networks

ocrnet

2020

Object-Contextual Representations for Semantic Segmentation

pointrend

2020

Pointrend: Image segmentation as rendering

setr

2020

Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

bisenetv2

2021

Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation

dpt

2021

Vision Transformers for Dense Prediction

isanet_r50-d8

2021

OCNet: Object Context for Semantic Segmentation

knet

2021

{K-Net: Towards} Unified Image Segmentation

mae

2021

Masked autoencoders are scalable vision learners

mask2former

2021

Per-Pixel Classification is Not All You Need for Semantic Segmentation

maskformer

2021

Per-pixel classification is not all you need for semantic segmentation

segformer

2021

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers

segmenter

2021

Segmenter: Transformer for semantic segmentation

stdc

2021

Rethinking BiSeNet For Real-time Semantic Segmentation

Beit

2022

{BEiT}: {BERT} Pre-Training of Image Transformers

convnext

2022

A ConvNet for the 2020s

ddrnet

2022

Deep Dual-Resolution Networks for Real-Time and Accurate Semantic Segmentation of Traffic Scenes

pidnet

2022

PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller

poolformer

2022

Metaformer is actually what you need for vision

segnext

2022

SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation

VPD

2023

Unleashing Text-to-Image Diffusion Models for Visual Perception

2、支持的骨干网络:

- [x] ResNet (CVPR'2016)
- [x] ResNeXt (CVPR'2017)
- [x] [HRNet (CVPR'2019)](configs/hrnet)
- [x] [ResNeSt (ArXiv'2020)](configs/resnest)
- [x] [MobileNetV2 (CVPR'2018)](configs/mobilenet_v2)
- [x] [MobileNetV3 (ICCV'2019)](configs/mobilenet_v3)
- [x] [Vision Transformer (ICLR'2021)](configs/vit)
- [x] [Swin Transformer (ICCV'2021)](configs/swin)
- [x] [Twins (NeurIPS'2021)](configs/twins)
- [x] [BEiT (ICLR'2022)](configs/beit)
- [x] [ConvNeXt (CVPR'2022)](configs/convnext)
- [x] [MAE (CVPR'2022)](configs/mae)
- [x] [PoolFormer (CVPR'2022)](configs/poolformer)
- [x] [SegNeXt (NeurIPS'2022)](configs/segnext)

3、支持的数据集:


- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#pascal-voc)
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#ade20k)
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#pascal-context)
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-10k)
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-164k)
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#chase-db1)
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#drive)
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#hrf)
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#stare)
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#dark-zurich)
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#nighttime-driving)
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#loveda)
- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam)
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isaid)
- [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets)
- [x] [LEVIR-CD](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#levir-cd)
- [x] [BDD100K](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#bdd100K)
- [x] [NYU](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#nyu)

4、自定义个人任务:

当然如果以上无法满足,这里面提供了详细的教程与方便的接口,以供制作自己的数据集和设计自己的算法、主干网络、损失函数等。

5、参考文章:

  1. Welcome to MMSegmentation’s documentation! — MMSegmentation 1.2.2 documentation
  2. open-mmlab/mmsegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark. (github.com)

这篇关于MMLAB的实例分割算法mmsegmentation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/679726

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

java String.join()方法实例详解

《javaString.join()方法实例详解》String.join()是Java提供的一个实用方法,用于将多个字符串按照指定的分隔符连接成一个字符串,这一方法是Java8中引入的,极大地简化了... 目录bVARxMJava String.join() 方法详解1. 方法定义2. 基本用法2.1 拼接

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

Java List排序实例代码详解

《JavaList排序实例代码详解》:本文主要介绍JavaList排序的相关资料,Java排序方法包括自然排序、自定义排序、Lambda简化及多条件排序,实现灵活且代码简洁,文中通过代码介绍的... 目录一、自然排序二、自定义排序规则三、使用 Lambda 表达式简化 Comparator四、多条件排序五、

Java实例化对象的​7种方式详解

《Java实例化对象的​7种方式详解》在Java中,实例化对象的方式有多种,具体取决于场景需求和设计模式,本文整理了7种常用的方法,文中的示例代码讲解详细,有需要的可以了解下... 目录1. ​new 关键字(直接构造)​2. ​反射(Reflection)​​3. ​克隆(Clone)​​4. ​反序列化

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python解决雅努斯问题实例方案详解

《Python解决雅努斯问题实例方案详解》:本文主要介绍Python解决雅努斯问题实例方案,雅努斯问题是指AI生成的3D对象在不同视角下出现不一致性的问题,即从不同角度看物体时,物体的形状会出现不... 目录一、雅努斯简介二、雅努斯问题三、示例代码四、解决方案五、完整解决方案一、雅努斯简介雅努斯(Janu

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3