用tensorflow中slim下的分类网络训练自己的数据集以及fine-tuning(可以直接实战使用)

本文主要是介绍用tensorflow中slim下的分类网络训练自己的数据集以及fine-tuning(可以直接实战使用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前期准备

训练flower数据集(包括fine-tuning)

训练自己的数据集(包括fine-tuning)

 

前期准备

前期了解

tensorflow models

在tensorflow models中有官方维护和非官方维护的models,official models就是官方维护的models,里面使用的接口都是一些官方的接口,比如tf.layers.conv2d之类。而research models是tensorflow的研究人员自己实现的一些流行网络,不受官方支持,里面会用到一些slim之类的非官方接口。但是因为research models实现的网络非常多,而且提供了完整的训练和评价方案,所以我们现在基于research models中的实现来部署网络。

环境配置

首先要保证tf.contrib.slim在你的tensorflow环境中是存在的,运行下面的脚本保证没有错误发生。

python -c "import tensorflow.contrib.slim as slim; eval = slim.evaluation.evaluate_once"

base代码准备

TF的库里面没有TF-slim的内容,所以我们需要将代码clone到本地

cd $HOME/workspace
git clone https://github.com/tensorflow/models/

运行以下脚本确定是否可用

cd $HOME/workspace/models/research/slim
python -c "from nets import cifarnet; mynet = cifarnet.cifarnet"

其实我们只需要使用research中的slim的代码,所以我是直接拷贝了slim的代码到本地,基于slim代码进行修改。

 

训练flower数据集

下载数据并创建tfrecord

官网提供了下载并且转换数据集的方法,运行如下脚本即可,脚本会直接下载flower数据集并且存储为TFRecord的格式。

$ python download_and_convert_data.py \--dataset_name=flowers \--dataset_dir=./tmp/data/flowers

为何官网要使用TFRecord呢?因为TFRecord和tensorflow内部有一个加速机制。实际读取tfrecord数据时,先以相应的tfrecord文件为参数,创建一个输入队列,这个队列有一定的容量,在一部分数据出队列时,tfrecord中的其他数据就可以通过预取进入队列,这个过程和网络的计算是独立进行的。也就是说,网络每一个iteration的训练不必等待数据队列准备好再开始,队列中的数据始终是充足的,而往队列中填充数据时,也可以使用多线程加速。

下载pre-trained checkpoint

每个网络对应的checkpoint可以从官网上找到,官网也提供了下载inception v3的checkpoint的例子

$ mkdir ./tmp/checkpoints
$ wget http

这篇关于用tensorflow中slim下的分类网络训练自己的数据集以及fine-tuning(可以直接实战使用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676273

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三