Megatron-LM源码系列(七):Distributed-Optimizer分布式优化器实现Part2

本文主要是介绍Megatron-LM源码系列(七):Distributed-Optimizer分布式优化器实现Part2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 使用入口

  • DistributedOptimizer类定义在megatron/optimizer/distrib_optimizer.py文件中。创建的入口是在megatron/optimizer/__init__.py文件中的get_megatron_optimizer函数中。根据传入的args.use_distributed_optimizer参数来判断是用DistributedOptimizer还是Float16OptimizerWithFloat16Params
def get_megatron_optimizer(model,no_weight_decay_cond=None,scale_lr_cond=None,lr_mult=1.0):...# Megatron optimizer.opt_ty = DistributedOptimizer \if args.use_distributed_optimizer else \Float16OptimizerWithFloat16Paramsreturn opt_ty(optimizer,args.clip_grad,args.log_num_zeros_in_grad,params_have_main_grad,args.use_contiguous_buffers_in_local_ddp,args.fp16,args.bf16,args.params_dtype,grad_scaler,model)
  • 相关的Optimizer的使用参考【Megatron-LM源码系列(六):Distributed-Optimizer分布式优化器实现Part1】

2. 初始化init源码说明

在这里插入图片描述

  • 初始化的过程很大程度对应的上图grad buffer分片的实现,对应init函数如下:
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,params_have_main_grad, use_contiguous_buffers_in_local_ddp,fp16, bf16, params_dtype, grad_scaler, models):
  • init时会通过build_model_gbuf_range_map函数先创建grad buffer的范围映射,也就是对应图中的world_index/local_index/param_index三个。这里的self.models是一个list类型,对于使用了interleave流水线方式的训练来说,这里的self.models中会保存多份model, 其余情况list中只有一个元素。
        # Model grad buffer ranges.self.model_gbuf_ranges = []for model_index, model in enumerate(self.models):self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
  • build_model_gbuf_range_map会依次按grad buffer中类型来进行range的初始化build_model_gbuf_range。这里定义了一个单独的Range类。
@classmethoddef build_model_gbuf_range_map(cls, model):"""Create param-to-grad-buffer mappings, for grad buffer data typeswithin a specific virtual model."""return {dtype : cls.build_model_gbuf_range(model, dtype)for dtype in model._grad_buffers}class Range:"""A range represents a start and end points for indexing a shardfrom a full tensor."""def __init__(self, start, end):self.start = startself.end = endself.size = end - startdef normalize(self, start = 0):return Range(start, start + self.size)def __str__(self):return "%d,%d [%d]" % (self.start, self.end, self.size)def __len__(self):return self.end - self.start
  • build_model_gbuf_range初始化range的流程如下:
    • 获取DP的rank,计算单个Grad buffer切片的大小
    • 保存当前rank的world range和local range, 分别对应world index和local index
    • 计算param的range范围,对应param index
    • 返回当前rank的相关range范围
    @classmethoddef build_model_gbuf_range(cls, model, dtype):# 获取DP的rankdata_parallel_rank = mpu.get_data_parallel_rank()data_parallel_world_size = mpu.get_data_parallel_world_size()# 计算单个Grad buffer切片的大小grad_buffer = model._grad_buffers[dtype]gbuf_size = grad_buffer.numelmax_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))# 跟据DDP的rank总数,分别计算每个rank对应的全局rangegbuf_world_all_ranges = []for r in range(data_parallel_world_size):gbuf_world_start = r * max_gbuf_range_sizegbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)gbuf_world_all_ranges.append(gbuf_world_range)# 保存当前rank的world range和local range# Local DP's ranges.gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]gbuf_local_range = gbuf_world_range.normalize()# 计算param的range范围param_range_map = cls.build_model_gbuf_param_range_map(model,dtype,gbuf_world_range)# Group into dict.data = {"local" : gbuf_local_range,"world" : gbuf_world_range,"world_all" : gbuf_world_all_ranges,"param_map" : param_range_map,"max_range_size" : max_gbuf_range_size,}return data
  • 接着会根据当前rank相关的Range内容self.model_gbuf_ranges调用build_model_param_gbuf_map函数,主要作用是创建model_gbuf_ranges的逆映射,保存param->(modex_index, type)的映射。
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...self.model_param_gbuf_map = \self.build_model_param_gbuf_map(self.model_gbuf_ranges)...def build_model_param_gbuf_map(cls, model_gbuf_ranges):"""Create a reverse of the model_gbuf_ranges, for referencing inopposite direction."""param_gbuf_map = {}for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):for dtype, gbuf_range_map in model_gbuf_range_map.items():for param, param_range_map in gbuf_range_map["param_map"].items():param_gbuf_map[param] = (model_index, dtype)return param_gbuf_map
  • self.build_model_param_gbuf_map之后是初始化Optimizer对应的local group range,Optimizer原本有param_groups包括多个参数组,这里build_optimizer_group_ranges为了创建param参数到group_index的map映射,也就是<model_parameter:group_index>;self.build_model_param_gbuf_map最后对每个group_range中增加新的orig_grouporig_group_idx两个key,原来group_range初始化的时候只有params一个key
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...# Optimizer ranges.self.model_param_group_index_map, self.opt_group_ranges = \self.build_optimizer_group_ranges(self.optimizer.param_groups,self.model_gbuf_ranges)...def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):# 获取param_groups中组的个数num_groups = len(param_groups)# 创建全局的参数到group_index的map映射,也就是<model_parameter:group_index>world_param_group_map = {}for group_index, group in enumerate(param_groups):for param in group["params"]:assert param.requires_gradworld_param_group_map[param] = group_index# 创建当前rank的local_param_group_map, local_param_group_map是param与(group_index, group_params_len)的映射, local_param_group_map虽然返回了但后面没用local_param_group_map = {}group_ranges = [ {"params": []} for _ in param_groups ]for model_gbuf_range_map in model_gbuf_ranges:for dtype, gbuf_range_map in model_gbuf_range_map.items():for param in gbuf_range_map["param_map"]:group_index = world_param_group_map[param]group_range = group_ranges[group_index]group_range["params"].append(param)local_param_group_map[param] = \(group_index, len(group_range["params"]) - 1)# Squeeze zero-size group ranges.for group_index, group_range in enumerate(group_ranges):group_range["orig_group"] = param_groups[group_index]group_range["orig_group_idx"] = param_groups[group_index]return local_param_group_map, group_ranges
  • 在初始化Optimizer之后,是通过创建self.build_model_and_main_param_groups创建optimizer step要用到的main parameter groups, 这里的group一方面是要进行reduce和gather通信操作,另一方面是被优化器用于梯度的更新操作。
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...# Allocate main param shards.(self.model_float16_groups,self.model_fp32_groups,self.shard_float16_groups,self.shard_fp32_groups,self.shard_fp32_from_float16_groups,) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,self.model_param_gbuf_map,self.opt_group_ranges)...
  • self.build_model_and_main_param_groups的实现主要是关于fp32/fp16/bf16三种类型训练时优化器内的显存分配。
    @classmethoddef build_model_and_main_param_groups(cls,model_gbuf_ranges,param_gbuf_map,opt_group_ranges):...# 保存原本fp16类型parammodel_float16_groups = []# 保存原本fp32类型parammodel_fp32_groups = []# 保存原本fp16类型param的切片shard_float16_groups = []# 保存原本fp32类型param的切片shard_fp32_groups = []# 保存原本fp16类型param的fp32类型param的副本shard_fp32_from_float16_groups = []# 分配每个group的param参数切片for group_index, group_range in enumerate(opt_group_ranges):for model_param in group_range["params"]:if model_param.type() in ['torch.cuda.HalfTensor','torch.cuda.BFloat16Tensor']:# 如果是fp16/bf16类型参数,clone为fp32类型的切片.shard_model_param = model_param.detach().view(-1) \[param_range.start:param_range.end]shard_main_param = shard_model_param.clone().float()...# 添加到group中model_float16_params_this_group.append(model_param)shard_float16_params_this_group.append(shard_model_param)shard_fp32_from_float16_params_this_group.append(shard_main_param)elif model_param.type() == 'torch.cuda.FloatTensor':# 如果是fp32类型参数,不进行clone,直接引用shard_model_param = model_param.view(-1) \[param_range.start:param_range.end]model_fp32_params_this_group.append(model_param)shard_fp32_params_this_group.append(shard_model_param)...# 更新优化器的参数group_range["orig_group"]["params"] = [*shard_fp32_params_this_group,*shard_fp32_from_float16_params_this_group,]return (model_float16_groups,model_fp32_groups,shard_float16_groups,shard_fp32_groups,shard_fp32_from_float16_groups,)
  • 在Optimizer init中,接下来是初始化self.param_buffers,这里的self.param_buffers是DDP模型的grad buffer的view示图,跟grad buffer共享存储,但是用自己的数据类型;最后更新优化器的param_groups。
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...# 初始化self.param_buffersself.param_buffers = []for model_index, model in enumerate(self.models):current_param_buffers = {}for dtype, grad_buffer in model._grad_buffers.items():# 获取存储,这里是兼容的写法.try:storage = grad_buffer.data.storage()._untyped()except:storage = grad_buffer.data.storage().untyped()# 基于grad_buffer的storage创建param_buffer类型,这里的params_dtype是参数类型; 这里的torch.tensor没有autograd的历史。param_buffer = torch.tensor(storage,dtype = params_dtype,device = grad_buffer.data.device)param_buffer = param_buffer[:grad_buffer.numel_padded]# 这里的dtype是grad_buffer的类型current_param_buffers[dtype] = param_bufferself.param_buffers.append(current_param_buffers)# 最后更新优化器的param_groupsself.optimizer.param_groups = \[ g["orig_group"] for g in self.opt_group_ranges ]self.optimizer.load_state_dict(self.optimizer.state_dict())

3. 参考

  • Megatron-LM源码系列(六):Distributed-Optimizer分布式优化器实现Part1
  • NVIDIA/Megatron-LM

这篇关于Megatron-LM源码系列(七):Distributed-Optimizer分布式优化器实现Part2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/674206

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont