Megatron-LM源码系列(七):Distributed-Optimizer分布式优化器实现Part2

本文主要是介绍Megatron-LM源码系列(七):Distributed-Optimizer分布式优化器实现Part2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 使用入口

  • DistributedOptimizer类定义在megatron/optimizer/distrib_optimizer.py文件中。创建的入口是在megatron/optimizer/__init__.py文件中的get_megatron_optimizer函数中。根据传入的args.use_distributed_optimizer参数来判断是用DistributedOptimizer还是Float16OptimizerWithFloat16Params
def get_megatron_optimizer(model,no_weight_decay_cond=None,scale_lr_cond=None,lr_mult=1.0):...# Megatron optimizer.opt_ty = DistributedOptimizer \if args.use_distributed_optimizer else \Float16OptimizerWithFloat16Paramsreturn opt_ty(optimizer,args.clip_grad,args.log_num_zeros_in_grad,params_have_main_grad,args.use_contiguous_buffers_in_local_ddp,args.fp16,args.bf16,args.params_dtype,grad_scaler,model)
  • 相关的Optimizer的使用参考【Megatron-LM源码系列(六):Distributed-Optimizer分布式优化器实现Part1】

2. 初始化init源码说明

在这里插入图片描述

  • 初始化的过程很大程度对应的上图grad buffer分片的实现,对应init函数如下:
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,params_have_main_grad, use_contiguous_buffers_in_local_ddp,fp16, bf16, params_dtype, grad_scaler, models):
  • init时会通过build_model_gbuf_range_map函数先创建grad buffer的范围映射,也就是对应图中的world_index/local_index/param_index三个。这里的self.models是一个list类型,对于使用了interleave流水线方式的训练来说,这里的self.models中会保存多份model, 其余情况list中只有一个元素。
        # Model grad buffer ranges.self.model_gbuf_ranges = []for model_index, model in enumerate(self.models):self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
  • build_model_gbuf_range_map会依次按grad buffer中类型来进行range的初始化build_model_gbuf_range。这里定义了一个单独的Range类。
@classmethoddef build_model_gbuf_range_map(cls, model):"""Create param-to-grad-buffer mappings, for grad buffer data typeswithin a specific virtual model."""return {dtype : cls.build_model_gbuf_range(model, dtype)for dtype in model._grad_buffers}class Range:"""A range represents a start and end points for indexing a shardfrom a full tensor."""def __init__(self, start, end):self.start = startself.end = endself.size = end - startdef normalize(self, start = 0):return Range(start, start + self.size)def __str__(self):return "%d,%d [%d]" % (self.start, self.end, self.size)def __len__(self):return self.end - self.start
  • build_model_gbuf_range初始化range的流程如下:
    • 获取DP的rank,计算单个Grad buffer切片的大小
    • 保存当前rank的world range和local range, 分别对应world index和local index
    • 计算param的range范围,对应param index
    • 返回当前rank的相关range范围
    @classmethoddef build_model_gbuf_range(cls, model, dtype):# 获取DP的rankdata_parallel_rank = mpu.get_data_parallel_rank()data_parallel_world_size = mpu.get_data_parallel_world_size()# 计算单个Grad buffer切片的大小grad_buffer = model._grad_buffers[dtype]gbuf_size = grad_buffer.numelmax_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))# 跟据DDP的rank总数,分别计算每个rank对应的全局rangegbuf_world_all_ranges = []for r in range(data_parallel_world_size):gbuf_world_start = r * max_gbuf_range_sizegbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)gbuf_world_all_ranges.append(gbuf_world_range)# 保存当前rank的world range和local range# Local DP's ranges.gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]gbuf_local_range = gbuf_world_range.normalize()# 计算param的range范围param_range_map = cls.build_model_gbuf_param_range_map(model,dtype,gbuf_world_range)# Group into dict.data = {"local" : gbuf_local_range,"world" : gbuf_world_range,"world_all" : gbuf_world_all_ranges,"param_map" : param_range_map,"max_range_size" : max_gbuf_range_size,}return data
  • 接着会根据当前rank相关的Range内容self.model_gbuf_ranges调用build_model_param_gbuf_map函数,主要作用是创建model_gbuf_ranges的逆映射,保存param->(modex_index, type)的映射。
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...self.model_param_gbuf_map = \self.build_model_param_gbuf_map(self.model_gbuf_ranges)...def build_model_param_gbuf_map(cls, model_gbuf_ranges):"""Create a reverse of the model_gbuf_ranges, for referencing inopposite direction."""param_gbuf_map = {}for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):for dtype, gbuf_range_map in model_gbuf_range_map.items():for param, param_range_map in gbuf_range_map["param_map"].items():param_gbuf_map[param] = (model_index, dtype)return param_gbuf_map
  • self.build_model_param_gbuf_map之后是初始化Optimizer对应的local group range,Optimizer原本有param_groups包括多个参数组,这里build_optimizer_group_ranges为了创建param参数到group_index的map映射,也就是<model_parameter:group_index>;self.build_model_param_gbuf_map最后对每个group_range中增加新的orig_grouporig_group_idx两个key,原来group_range初始化的时候只有params一个key
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...# Optimizer ranges.self.model_param_group_index_map, self.opt_group_ranges = \self.build_optimizer_group_ranges(self.optimizer.param_groups,self.model_gbuf_ranges)...def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):# 获取param_groups中组的个数num_groups = len(param_groups)# 创建全局的参数到group_index的map映射,也就是<model_parameter:group_index>world_param_group_map = {}for group_index, group in enumerate(param_groups):for param in group["params"]:assert param.requires_gradworld_param_group_map[param] = group_index# 创建当前rank的local_param_group_map, local_param_group_map是param与(group_index, group_params_len)的映射, local_param_group_map虽然返回了但后面没用local_param_group_map = {}group_ranges = [ {"params": []} for _ in param_groups ]for model_gbuf_range_map in model_gbuf_ranges:for dtype, gbuf_range_map in model_gbuf_range_map.items():for param in gbuf_range_map["param_map"]:group_index = world_param_group_map[param]group_range = group_ranges[group_index]group_range["params"].append(param)local_param_group_map[param] = \(group_index, len(group_range["params"]) - 1)# Squeeze zero-size group ranges.for group_index, group_range in enumerate(group_ranges):group_range["orig_group"] = param_groups[group_index]group_range["orig_group_idx"] = param_groups[group_index]return local_param_group_map, group_ranges
  • 在初始化Optimizer之后,是通过创建self.build_model_and_main_param_groups创建optimizer step要用到的main parameter groups, 这里的group一方面是要进行reduce和gather通信操作,另一方面是被优化器用于梯度的更新操作。
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...# Allocate main param shards.(self.model_float16_groups,self.model_fp32_groups,self.shard_float16_groups,self.shard_fp32_groups,self.shard_fp32_from_float16_groups,) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,self.model_param_gbuf_map,self.opt_group_ranges)...
  • self.build_model_and_main_param_groups的实现主要是关于fp32/fp16/bf16三种类型训练时优化器内的显存分配。
    @classmethoddef build_model_and_main_param_groups(cls,model_gbuf_ranges,param_gbuf_map,opt_group_ranges):...# 保存原本fp16类型parammodel_float16_groups = []# 保存原本fp32类型parammodel_fp32_groups = []# 保存原本fp16类型param的切片shard_float16_groups = []# 保存原本fp32类型param的切片shard_fp32_groups = []# 保存原本fp16类型param的fp32类型param的副本shard_fp32_from_float16_groups = []# 分配每个group的param参数切片for group_index, group_range in enumerate(opt_group_ranges):for model_param in group_range["params"]:if model_param.type() in ['torch.cuda.HalfTensor','torch.cuda.BFloat16Tensor']:# 如果是fp16/bf16类型参数,clone为fp32类型的切片.shard_model_param = model_param.detach().view(-1) \[param_range.start:param_range.end]shard_main_param = shard_model_param.clone().float()...# 添加到group中model_float16_params_this_group.append(model_param)shard_float16_params_this_group.append(shard_model_param)shard_fp32_from_float16_params_this_group.append(shard_main_param)elif model_param.type() == 'torch.cuda.FloatTensor':# 如果是fp32类型参数,不进行clone,直接引用shard_model_param = model_param.view(-1) \[param_range.start:param_range.end]model_fp32_params_this_group.append(model_param)shard_fp32_params_this_group.append(shard_model_param)...# 更新优化器的参数group_range["orig_group"]["params"] = [*shard_fp32_params_this_group,*shard_fp32_from_float16_params_this_group,]return (model_float16_groups,model_fp32_groups,shard_float16_groups,shard_fp32_groups,shard_fp32_from_float16_groups,)
  • 在Optimizer init中,接下来是初始化self.param_buffers,这里的self.param_buffers是DDP模型的grad buffer的view示图,跟grad buffer共享存储,但是用自己的数据类型;最后更新优化器的param_groups。
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...# 初始化self.param_buffersself.param_buffers = []for model_index, model in enumerate(self.models):current_param_buffers = {}for dtype, grad_buffer in model._grad_buffers.items():# 获取存储,这里是兼容的写法.try:storage = grad_buffer.data.storage()._untyped()except:storage = grad_buffer.data.storage().untyped()# 基于grad_buffer的storage创建param_buffer类型,这里的params_dtype是参数类型; 这里的torch.tensor没有autograd的历史。param_buffer = torch.tensor(storage,dtype = params_dtype,device = grad_buffer.data.device)param_buffer = param_buffer[:grad_buffer.numel_padded]# 这里的dtype是grad_buffer的类型current_param_buffers[dtype] = param_bufferself.param_buffers.append(current_param_buffers)# 最后更新优化器的param_groupsself.optimizer.param_groups = \[ g["orig_group"] for g in self.opt_group_ranges ]self.optimizer.load_state_dict(self.optimizer.state_dict())

3. 参考

  • Megatron-LM源码系列(六):Distributed-Optimizer分布式优化器实现Part1
  • NVIDIA/Megatron-LM

这篇关于Megatron-LM源码系列(七):Distributed-Optimizer分布式优化器实现Part2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/674206

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删