【RF回归预测】基于matlab蜂虎狩猎算法优化森林算法BEH-RF风电数据回归预测【含Matlab源码 3844期】

本文主要是介绍【RF回归预测】基于matlab蜂虎狩猎算法优化森林算法BEH-RF风电数据回归预测【含Matlab源码 3844期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、蜂虎狩猎算法优化森林算法BEH-RF风电功率回归预测简介

1 蜂虎狩猎算法
蜂虎狩猎算法(Bee Tiger Hunting Algorithm, BTH A) 是一种基于群体智能的优化算法Q, 该算法模拟了蜜蜂和老虎在捕食过程中的行
为,并通过不断迭代寻找最优解。该算法具有简单、易于实现、全局寻优能力强等特点,在多种优化问题中表现出良好的效果。

算法原理
蜂虎狩猎算法模拟了蜜蜂和老虎在捕食过程中的行为,包含两个阶段:搜索阶段和聚合阶段。
搜索阶段:在该阶段中,蜜蜂和老虎在搜索食物时都会随机移动,并记录下最佳位置。其中,蜜蜂以自身为中心将周围的食物信息整合起来,形成一个适应度值,最后选择适应度值最高的位置;而老虎则采用基于梯度的搜索策略,根据当前位置的梯度信息确定下一步的移动方向。

聚合阶段:在该阶段中,蜜蜂和老虎将在寻找到的最佳位置附近聚集,并通过交换信息来更新自身位置。其中,蜜蜂会向最优解点靠拢,并用自己的适应度值替换掉该点原有的适应度值;而老虎则会沿着梯度方向反复迭代,直到达到最优解点。

2 随机森林算法原理
随机森林算法是一种集成学习算法,它通过同时使用多个决策树对数据集进行训练,并通过投票机制或平均化方式来得出最终的预测结果。随机森林算法具有很高的准确性和鲁棒性,可以有效地避免过拟合问题,可以处理高维度数据,可以评估特征的重要性。但是,随机森林算法对于少量数据集表现不佳,结果不够直观,训练时间较长,对于分类不平衡的数据集表现不佳。在应用随机森林算法时,需要进行数据预处理、构建随机森林分类模型和模型评估等步骤

3 随机森林算法步骤
步骤如下:
1、从原始数据集中使用自助采样法(bootstrap)随机抽取n个样本,作为新的训练集。
2、随机选择k个特征,建立一个决策树模型。
3、重复步骤1和步骤2,建立多个决策树模型。
4、对于分类问题,采用投票法(majority voting);对于回归问题,采用平均法(averaging)。
5、对新的数据进行预测,将多个决策树的结果进行综合,得到最终的预测结果。

4 基本描述
4.1 Matlab基于蜂虎狩猎算法优化森林算法BEH-RF的数据多输入单输出回归预测(完整源码和数据)
4.2 BEH选择最佳的RF核函数参数;
4.3 多特征输入单输出的回归预测。程序内注释详细,excel数据,直接替换数据就可以用。
4.4 程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2019b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。
4.5 代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

⛄二、部分源代码

clear all
clc
rng(‘default’);
%% 导入数据,‘sheet1’
input=xlsread(‘./叶轮数据说明/4米平均风速-风速条件.xlsx’,‘Sheet1’,‘B3:G12002’);
output=xlsread(‘./叶轮数据说明/4米平均风速-状态.xlsx’,‘Sheet1’,‘F3:F12002’);
N=length(output); %全部样本数目
testNum=round(N*0.9); %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目
% 随机生成训练集、测试集
k = randperm(size(input,1));
% 训练集——1900个样本
P_train=input(k(1:trainNum)😅‘;
T_train=output(k(1:trainNum))’;
% 测试集——100个样本
P_test=input(k(trainNum+1:testNum)😅‘;
T_test=output(k(trainNum+1:testNum))’;

%% 归一化
% 训练集
[Pn_train,inputps] = mapminmax(P_train,-1,1);
Pn_test = mapminmax(‘apply’,P_test,inputps);
% 测试集
[Tn_train,outputps] = mapminmax(T_train,-1,1);
Tn_test = mapminmax(‘apply’,T_test,outputps);
Pn_train = Pn_train’;
Pn_test = Pn_test’;
Tn_train = Tn_train’;
Tn_test = Tn_test’;

%% 定义蜂虎狩猎优化参数
pop=20; %种群数量
Max_iteration=30; % 设定最大迭代次数
dim = 2;%维度,即树个数和最小叶子点树
lb = [1,1];%下边界
ub = [50,20];%上边界
fobj = @(x) fun(x,Pn_train,Tn_train,Pn_test,Tn_test);
[Best_score,Best_pos,BEH_curve]=BEH(pop,Max_iteration,lb,ub,dim,fobj); %开始优化
figure
plot(BEH_curve,‘linewidth’,1.5);
grid on
xlabel(‘迭代次数’)
ylabel(‘适应度函数’)
title(‘BEH-随机森林收敛曲线’)
disp([‘寻优得到的树个数:’,num2str(round(Best_pos(1)))])
disp([‘最小叶子节点:’,num2str(round(Best_pos(2)))])
%用得到的最优参数,训练随机树
numTrees = round(Best_pos(1));
minLeafSize = round(Best_pos(2));
model = TreeBagger(numTrees,Pn_train,Tn_train,‘Method’,‘regression’,‘MinLeafSize’,minLeafSize);
Tn_sim1 = predict(model, Pn_train);
Tn_sim2 = predict(model, Pn_test);
% 反归一化
T_sim1 = mapminmax(‘reverse’,Tn_sim1,outputps);
T_sim2 = mapminmax(‘reverse’,Tn_sim2,outputps);
error1 = T_sim1’ - T_train;
error2 = T_sim2’ - T_test;

%% 传统随机森林
model = TreeBagger(20,Pn_train,Tn_train,‘Method’,‘regression’,‘MinLeafSize’,1);
Tn_sim11 = predict(model, Pn_train);
Tn_sim22 = predict(model, Pn_test);
% 反归一化
T_sim11 = mapminmax(‘reverse’,Tn_sim11,outputps);
T_sim22 = mapminmax(‘reverse’,Tn_sim22,outputps);
error11 = T_sim11’ - T_train;
error22 = T_sim22’ - T_test;

%% 结果对比
figure
plot(T_train,‘rs-’,‘linewidth’,1)
hold on
plot(T_sim1,‘b-o’,‘linewidth’,1)
plot(T_sim11,‘k-s’,‘linewidth’,1)
xlabel(‘训练集样本编号’)
ylabel(‘训练集输出’)
title(‘BEH-RF和RF训练集输出’)
axis tight
legend(‘期望输出’,‘BEH-RF’,‘RF’)

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]仝卫国,郭超宇,赵如意.基于改进麻雀算法优化LSSVM的再循环箱浆液密度预测模型[J].电子测量技术. 2022,45(01)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【RF回归预测】基于matlab蜂虎狩猎算法优化森林算法BEH-RF风电数据回归预测【含Matlab源码 3844期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/673987

相关文章

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核