无约束最优化方法-牛顿法

2024-02-02 14:38

本文主要是介绍无约束最优化方法-牛顿法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


无约束最优化算法-Newton法原理及c++编程实现
6536人阅读 评论(5) 收藏 举报
本文章已收录于:
分类:
作者同类文章 X

    无约束最优化方法-牛顿法

    牛顿法Newton'smethod)又称为牛顿-拉弗森方法Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法,迭代的示意图如下:


    总结@郑海波 blog.csdn.net/nuptboyzhb/

    参考:斯坦福大学machine learning

    本博客中所有源代码:http://download.csdn.net/detail/nuptboyzhb/4886786

    求解问题:

    1.无约束函数f的0点。

    2.无约束函数f的最小值,最大值。



    函数的曲线(matlab画出)



    #include <iostream>

    #include <math.h>

    using namespace std;

    #define f(x)  (pow(x,3)-4.0*pow(x,2)+3.0*x)

    #define  df(x)    (3.0*pow(x,2)-8.0*x+3)

    int main()

    {

           doublex=9;//设置迭代的初始值

           doubleerr=1.0e-10;//设置精度

           intcount=0;

        while(true)

        {

                  x=x-f(x)/df(x);

                  if(abs(f(x))<err)

                  {

                         break;

                  }

                  cout<<""<<count++<<"迭代x="<<x<<" f(x)="<<f(x)<<endl;

        }

           cout<<"函数f0点为:"<<x<<endl;

           return0;

    }

    结果讨论:

    迭代结果与初始值有关,迭代的结果总是初始值x附近的0。如:

    1.初始值x=9时,运行结果如下:

    0迭代 x=6.51724 f(x)=126.47

    1迭代 x=4.90174 f(x)=36.3714

    2迭代 x=3.88768 f(x)=9.96551

    3迭代 x=3.30967 f(x)=2.36715

    函数f0点为:3.05742

    Press any key tocontinue

    2.初始值x=1.3时,运行结果如下:

    函数f0点为:1.01545

    Press any key tocontinue

    3.初始值为-10时,运行结果如下:

    0迭代 x=-6.26632 f(x)=-421.924

    1迭代 x=-3.79793 f(x)=-123.873

    2迭代 x=-2.18197 f(x)=-35.9783

    3迭代 x=-1.14629 f(x)=-10.201

    4迭代 x=-0.51317 f(x)=-2.72803

    函数f0点为:-0.167649

    Press any key tocontinue


    [cpp] view plain copy print ?
    1. #include <iostream>  
    2. #include <math.h>  
    3. using namespace std;  
    4. #define  f(x)   (pow(x,3)-4.0*pow(x,2)+3.0*x)  
    5. #define df(x)    (3.0*pow(x,2)-8.0*x+3)  
    6. #define ddf(x)    (6.0*x-8)  
    7. int main()  
    8. {  
    9.     double x=1.2;//初始值  
    10.     double err=1.0e-10;  
    11.     int count=0;  
    12.     while (true)  
    13.     {  
    14.         x=x-df(x)/ddf(x);  
    15.         if (abs(df(x))<err)  
    16.         {  
    17.             break;  
    18.         }  
    19.         cout<<"第"<<count++<<"迭代x="<<x<<" df(x)="<<df(x)<<endl;  
    20.     }  
    21.     cout<<"函数f极点为:("<<x<<","<<f(x)<<")"<<endl;  
    22.     return 0;  
    23. }  
    #include <iostream>
    #include <math.h>
    using namespace std;
    #define  f(x)   (pow(x,3)-4.0*pow(x,2)+3.0*x)
    #define df(x)    (3.0*pow(x,2)-8.0*x+3)
    #define ddf(x)    (6.0*x-8)
    int main()
    {double x=1.2;//初始值double err=1.0e-10;int count=0;while (true){x=x-df(x)/ddf(x);if (abs(df(x))<err){break;}cout<<"第"<<count++<<"迭代x="<<x<<" df(x)="<<df(x)<<endl;}cout<<"函数f极点为:("<<x<<","<<f(x)<<")"<<endl;return 0;
    }
    


    结果讨论:

    迭代结果与初始值有关,迭代的结果总是初始值x附近的极值。如:

    1.初始值x=9时,运行结果如下:

    0迭代x=5.21739df(x)=42.9244

    1迭代x=3.37549df(x)=10.1778

    2迭代x=2.54484df(x)=2.06992

    函数f极点为:(2.26008,-2.1072)

    Press any key tocontinue

    2.初始值x=1.2时,运行结果如下:

    0迭代x=-1.65df(x)=24.3675

    1迭代x=-0.288687df(x)=5.55952

    函数f极点为:(0.282567,0.550886)

    Press any key tocontinue

    3.初始值为-10时,运行结果如下:

    0迭代x=-4.36765df(x)=95.1702

    1迭代x=-1.58537df(x)=23.2232

    2迭代x=-0.259259df(x)=5.27572

    函数f极点为:(0.292851,0.560622)

    Press any key tocontinue

    注意:对于只有1个0点的函数求解或只有一个极值的函数求解时,迭代结果一般与初始值的关系不大,但迭代次数会受影响。

    转载请声明,未经允许,不得用以商业目的


    这篇关于无约束最优化方法-牛顿法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/671016

    相关文章

    python获取指定名字的程序的文件路径的两种方法

    《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

    JavaScript中的高级调试方法全攻略指南

    《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

    Python中 try / except / else / finally 异常处理方法详解

    《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

    JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

    《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

    504 Gateway Timeout网关超时的根源及完美解决方法

    《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

    MySQL 表空却 ibd 文件过大的问题及解决方法

    《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

    python 线程池顺序执行的方法实现

    《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

    SpringBoot通过main方法启动web项目实践

    《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

    使用Java读取本地文件并转换为MultipartFile对象的方法

    《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

    Python文本相似度计算的方法大全

    《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac