【算法与数据结构】718、1143、LeetCode最长重复子数组 最长公共子序列

本文主要是介绍【算法与数据结构】718、1143、LeetCode最长重复子数组 最长公共子序列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、718、最长重复子数组
  • 二、1143、最长公共子序列
  • 三、完整代码

所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。

一、718、最长重复子数组

在这里插入图片描述

  思路分析

  • 第一步,动态数组的含义。 d p [ i ] [ j ] dp[i][j] dp[i][j]代表以下标 i − 1 i - 1 i1为结尾的nums1,和以下标 j − 1 j - 1 j1为结尾的nums2,最长重复子数组长度为 d p [ i ] [ j ] dp[i][j] dp[i][j]
  • 第二步,递推公式。根据 d p [ i ] [ j ] dp[i][j] dp[i][j]的定义, d p [ i ] [ j ] dp[i][j] dp[i][j]的状态只能由 d p [ i − 1 ] [ j − 1 ] dp[i - 1][j - 1] dp[i1][j1]推导出来。
	if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
  • 第三步,元素初始化。dp数组中的所有元素都初始化为0。
  • 第四步,递归顺序。一共有两层循环,先遍历nums1或者先遍历nums2都可以。
  • 第五步,打印结果。题目要求长度最长的子数组的长度。所以在遍历的时候顺便把 d p [ i ] [ j ] dp[i][j] dp[i][j]的最大值记录下来。
      程序如下
// 718、最长重复子数组
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;if (dp[i][j] > result) result = dp[i][j];}}return result;}
};

复杂度分析:

  • 时间复杂度: O ( n ∗ m ) O(n*m) O(nm) n n n m m m分别是两个数组的长度。
  • 空间复杂度: O ( n ∗ m ) O(n*m) O(nm)

二、1143、最长公共子序列

在这里插入图片描述

  思路分析

  1. 第一步,动态数组的含义。 d p [ i ] [ j ] dp[i][j] dp[i][j]代表以下标 i − 1 i - 1 i1为结尾的text1,和以下标 j − 1 j - 1 j1为结尾的text2,最长公共子序列长度为 d p [ i ] [ j ] dp[i][j] dp[i][j]
  2. 第二步,递推公式。 d p [ i ] [ j ] dp[i][j] dp[i][j]可以由两种情况推导出来:
  • t e x t 1 [ i − 1 ] text1[i - 1] text1[i1] t e x t 2 [ j − 1 ] text2[j - 1] text2[j1]相同:那么找到一个公共元素, d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1 dp[i][j] = dp[i - 1][j - 1] + 1 dp[i][j]=dp[i1][j1]+1
  • t e x t 1 [ i − 1 ] text1[i - 1] text1[i1] t e x t 2 [ j − 1 ] text2[j - 1] text2[j1]不相同:那么 t e x t 1 [ 0 , i − 2 ] text1[0, i - 2] text1[0,i2] t e x t 2 [ 0 , j − 1 ] text2[0, j - 1] text2[0,j1]的最长公共子序列 和 t e x t 1 [ 0 , i − 1 ] text1[0, i - 1] text1[0,i1] t e x t 2 [ 0 , j − 2 ] text2[0, j - 2] text2[0,j2]的最长公共子序列,取最大的。
	if (text1[i - 1] == text2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
  • 第三步,元素初始化。dp数组中的所有元素都初始化为0。
  • 第四步,递归顺序。一共有两层循环,从前往后进行遍历。
  • 第五步,打印结果。题目要求最长公共子序列的长度。所以在遍历的时候顺便把 d p [ i ] [ j ] dp[i][j] dp[i][j]的最大值记录下来。
      程序如下
// 1143、最长公共子序列
class Solution2 {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));int result = 0;for (int i = 1; i <= text1.size(); i++) {for (int j = 1; j <= text2.size(); j++) {if (text1[i - 1] == text2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);if(dp[i][j] > result) result = dp[i][j];}}return result;}
};

复杂度分析:

  • 时间复杂度: O ( n ∗ m ) O(n*m) O(nm) n n n m m m分别是两个序列的长度。
  • 空间复杂度: O ( n ∗ m ) O(n*m) O(nm)

三、完整代码

# include <iostream>
# include <vector>
# include <string>
using namespace std;// 718、最长重复子数组
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;if (dp[i][j] > result) result = dp[i][j];}}return result;}
};// 1143、最长公共子序列
class Solution2 {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));int result = 0;for (int i = 1; i <= text1.size(); i++) {for (int j = 1; j <= text2.size(); j++) {if (text1[i - 1] == text2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);if(dp[i][j] > result) result = dp[i][j];}}return result;}
};int main() {//vector<int> nums1 = { 1, 2, 3, 2, 1 }, nums2 = { 3, 2, 1, 4, 7 };//Solution s1;//int result = s1.findLength(nums1, nums2);string text1 = "abcde", text2 = "ace";Solution2 s1;int result = s1.longestCommonSubsequence(text1, text2);cout << result << endl;system("pause");return 0;
}

end

这篇关于【算法与数据结构】718、1143、LeetCode最长重复子数组 最长公共子序列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670840

相关文章

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序