活动回顾 | 矩阵起源 CEO 王龙:与大数据结合,是大模型成熟的必经之路

本文主要是介绍活动回顾 | 矩阵起源 CEO 王龙:与大数据结合,是大模型成熟的必经之路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导读

近日,由数据猿和上海大数据联盟主办,上海市经济和信息化委员会、上海市科学技术委员会指导的“第六届金猿季&魔方论坛——大数据产业发展论坛”在上海市四行仓库举行,吸引了数百位业界精英的参与。

本次论坛以“小趋势·大未来”为主题,围绕大数据产业的各个领域进行分享。矩阵起源创始人及 CEO 王龙,受邀参与“大数据 + 大模型,挖掘数据智能‘金矿’”圆桌论坛,与另外四位嘉宾一同深入探讨了 4 个问题,本文整理了王龙的分享内容,他就数据集质量、大模型对大数据产业的影响、2024年大模型应用爆点以及大模型与大数据融合面临的问题和挑战进行了盘点与分析。

Q1 数据集的质量和规模如何影响大模型性能?如果要构建良好的行业大模型,对于数据集会有什么要求?

大模型是用户可以采集到的所有训练数据集的一张缩略图。数据集的内容和质量对于大模型的训练质量会有根本性影响。另一方面,在例如金融、证券、能源和制造等很多传统行业落地时,大模型生成的内容需要是精准而实时的。在这些行业,如何和知识图谱、训练数据、结构化数据结合,避免大模型出现幻觉与错误是至关重要的问题。大模型需要和外部大数据结合,形成链路闭环,这样才既能在平时“一本正经的胡说八道”,又能够在需要时给出实时和精准的信息。

Q2 大模型对大数据产业和大数据的各个环节有新的影响?

大模型是一个利用 transformer 架构来预测、推断和决策的概率系统,而基于检索的传统大数据会带来既可控又准确的结果,大部分情况下概率系统和精确系统的结合是有必要的。矩阵起源团队很早就开始思考大模型与大数据的结合点,DB for AI、AI for DB、AI in DB、AI with DB, 存在多种合作模式,数据库智能运维,用户交互,知识库与智能问答,训练和推理都是一些可行的方向。用户可以使用大模型运用预处理的日志进行数据库的故障诊断;使用大模型按照场景写出所需要的 SQL 语句;运用大模型帮助企业建立知识库与BOT,但这些落地也都有各自的挑战。例如在构建企业知识库时,有可能回答出现产生10,000条数据时期中1条数据是错误的情况,糟糕的是用户并不知道错误的是哪条,也不知道到底什么时候出错。矩阵起源的一个思路是使用 RAG 模式或者使用大模型给出直接答案的时候,对输入和输出进行评估,如果需要精确实时信息而大模型自身又无法判断的时候,我们就会重定向到知识图谱或是结构化数据库中寻找精准的答案,即一个能实现大模型诊断的数据管理系统。这个技术难度非常高,但者也是大模型在行业落地中最关键的难题之一。

Q3 2024年大模型应用的爆点是什么?

我认为爆点会出现在大模型的上下游,从上游的角度考虑,一定会有一种新型的 Platform 或者 Infra 来解决大模型的训练和推理成本以及效率和幻觉问题,当然我希望在20年后回头看时,矩阵起源就是是这么一家公司。从下游角度来看,我认为爆点是多模态的内容生产,短视频、AR、VR 这类对内容有强需求的领域,大模型如果能够帮助其打破内容创作的瓶颈,会有很大的机会。也许未来的抖音、微信已经在酝酿之中了。

Q4 如果要将大模型和大数据进行融合,会遇到哪些问题和挑战?

难点在于需要有标杆型的行业应用出现,很多公司会发现大模型在行业落地成本极高,算一下账发现,还不如使用传统手段。这需要企业客户以及厂商对大模型的价值边界和局限性,以及自身的应用场景有较为清晰的认知,做好落地准备和执行,同时也要意识到企业的管理和运营策略也需要做相应的变化,才能最大化的发掘大模型的价值。

关于矩阵起源

矩阵起源是是业界领先的大数据及数据库管理系统(DBMS)技术和服务提供商,主要团队成员来自国内外知名科技公司,具备强大的创新能力。矩阵起源的目标是打造并使用世界一流的数据基础设施技术和产品,协助企业实现从信息化、数字化到智能化的转型和升级。矩阵起源在云计算、数据库、大数据及人工智能相关领域拥有核心竞争力,具备广阔的行业和国际视野以及前瞻性,能够快速有效的将先进技术在不同领域实用化并规模化扩展。

MatrixOne

矩阵起源的核心产品MatrixOne,是基于云原生技术,可同时在公有云和私有云部署的多模数据库。该产品使用存算分离、读写分离、冷热分离的原创技术架构,能够在一套存储和计算系统下同时支持事务、分析、流、时序和向量等多种负载,并能够实时、按需的隔离或共享存储和计算资源。MatrixOne能够帮助用户大幅简化日益复杂的IT架构,提供极简、极灵活、高性价比和高性能的数据服务。

关键词:超融合数据库、多模数据库、云原生数据库、国产数据库

MatrixOrigin 官网:新一代超融合异构开源数据库-矩阵起源(深圳)信息科技有限公司 MatrixOne

Github 仓库:GitHub - matrixorigin/matrixone: Hyperconverged cloud-edge native database

这篇关于活动回顾 | 矩阵起源 CEO 王龙:与大数据结合,是大模型成熟的必经之路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666659

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元