ImageNet预训练图像分类模型预测单张图像

2024-01-31 14:44

本文主要是介绍ImageNet预训练图像分类模型预测单张图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导入基础工具包

import osimport cv2import pandas as pd
import numpy as npimport torchimport matplotlib.pyplot as plt
%matplotlib inline

计算设备确定

# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

载入预训练模型

from torchvision import models
# 载入预训练图像分类模型model = models.resnet18(pretrained=True) # model = models.resnet152(pretrained=True)
model = model.eval() #将模型设为eval
model = model.to(device)

图像预处理,比较固定的四个部分,其他分类任务也可以用。

四步:

  1. 缩放裁剪
  2. 中心获取
  3. 转为Tensor
  4. 归一化处理:更近似于正态分布,易于神经网络处理。mean、std这六个数也是通用的。
from torchvision import transforms# 测试集图像预处理-RCTN:缩放裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])

载入图片

# img_path = 'test_img/banana1.jpg'
# img_path = 'test_img/husky1.jpeg'
img_path = 'test_img/basketball_shoe.jpeg'# img_path = 'test_img/cat_dog.jpg'# 用 pillow 载入
from PIL import Image
img_pil = Image.open(img_path)

执行图像分类预测:

input_img = test_transform(img_pil) # 预处理,将图片传入图片与处理的函数

 转换模型所需要的维度:

input_img = input_img.unsqueeze(0).to(device)
input_img.shape

运行后为:

torch.Size([1, 3, 224, 224]),即一张3通道224*224的图片

执行前向预测:
 

# 执行前向预测,得到所有类别的 logit 预测分数
pred_logits = model(input_img) 
pred_logits.shape

结果为:

torch.Size([1, 1000])

利用softmax对分数大小进行比较:

import torch.nn.functional as F
pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算
pred_softmax.shape

预测结果分析

对softmax结果画一个柱状图:

plt.figure(figsize=(8,4))x = range(1000)
y = pred_softmax.cpu().detach().numpy()[0]ax = plt.bar(x, y, alpha=0.5, width=0.3, color='yellow', edgecolor='red', lw=3)
plt.ylim([0, 1.0]) # y轴取值范围
# plt.bar_label(ax, fmt='%.2f', fontsize=15) # 置信度数值plt.xlabel('Class', fontsize=20)
plt.ylabel('Confidence', fontsize=20)
plt.tick_params(labelsize=16) # 坐标文字大小
plt.title(img_path, fontsize=25)plt.show()

取置信度最大的n个结果:

n = 10
top_n = torch.topk(pred_softmax, n)
top_n

out:

torch.return_types.topk(
values=tensor([[0.5988, 0.3556, 0.0064, 0.0047, 0.0041, 0.0041, 0.0037, 0.0025, 0.0022,0.0022]], device='cuda:0', grad_fn=<TopkBackward0>),
indices=tensor([[430, 514, 522, 630, 502, 770, 427, 768, 805,  35]], device='cuda:0'))

解析出类别:

# 解析出类别
pred_ids = top_n[1].cpu().detach().numpy().squeeze()
pred_ids

out:

array([430, 514, 522, 630, 502, 770, 427, 768, 805,  35])

如何知道430、514是哪一类?

df = pd.read_csv('imagenet_class_index.csv')

将分类结果写在原图上:

# 用 opencv 载入原图
img_bgr = cv2.imread(img_path)for i in range(n):class_name = idx_to_labels[pred_ids[i]][1] # 获取类别名称confidence = confs[i] * 100 # 获取置信度text = '{:<15} {:>.4f}'.format(class_name, confidence)print(text)# !图片,添加的文字,左上角坐标,字体,字号,bgr颜色,线宽img_bgr = cv2.putText(img_bgr, text, (25, 50 + 40 * i), cv2.FONT_HERSHEY_SIMPLEX, 1.25, (0, 0, 255), 3)# 保存图像
cv2.imwrite('output/img_pred.jpg', img_bgr)# 载入预测结果图像
img_pred = Image.open('output/img_pred.jpg')
img_pred

 

预测结果用表格输出:

pred_df = pd.DataFrame() # 预测结果表格
for i in range(n):class_name = idx_to_labels[pred_ids[i]][1] # 获取类别名称label_idx = int(pred_ids[i]) # 获取类别号wordnet = idx_to_labels[pred_ids[i]][0] # 获取 WordNetconfidence = confs[i] * 100 # 获取置信度pred_df = pred_df.append({'Class':class_name, 'Class_ID':label_idx, 'Confidence(%)':confidence, 'WordNet':wordnet}, ignore_index=True) # 预测结果表格添加一行
display(pred_df) # 展示预测结果表格

 

这篇关于ImageNet预训练图像分类模型预测单张图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/664137

相关文章

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(