NRF24L01无线模块六通道数据收发实现---关键参数配置说明

本文主要是介绍NRF24L01无线模块六通道数据收发实现---关键参数配置说明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

做一个设计,需要一个无线主机负责接收数据,六个无线从机负责采集温度数据,并将数据发送至主机;

数据传输方案有两种:1.轮询式,即主机轮询给各从机发送查询指令,收到指令的从机会将温度数据发送至主机,主机接收到该从机数据或超时未收到,则向下一个从机发送查询指令,直到查询完毕;     缺点:对主机采集数据频率高的不适用,这种采集方式花费时间较长,适合从机较少的系统中;

2.不同通道传输,各通道互不影响: 24L01模块设置了6个不同的数据通道,这些通道共用一个通信频率,但传输数据互不影响;可以最多六个通道同时传输数据,这样可以把六个从机设置为六个不同的数据通道,主机分别接收不同数据通道的数据即可;    优点: 实时通信性强;  缺点:仅六路通道;

通道地址设置

      每一个数据通道使用不同的地址但是共用相同的频道,也就是说6个不同的nRF24L01设置为发送模式后可以与同一个设置为接收模式的nRF24L01进行通讯,而设置为接收模式的nRF24L01可以对这6个发射端进行识别,数据通道0是唯一的一个可以配置为40位自身地址的数据通道,1~5数据通道都为8位自身地址和32位公用地址。

直接贴代码来看24L01配置

无线主机配置:

const uchar ip0[5]={'0','a','d','d','r'};//接收地址0  
const uchar ip1[5]={'1','a','d','d','r'};//接收地址1                                   
const uchar ip2[5]={'2','a','d','d','r'};//接收地址2

const uchar ip3[5]={'3','a','d','d','r'};//接收地址3

const uchar ip4[5]={'4','a','d','d','r'};//接收地址4

const uchar ip5[5]={'5','a','d','d','r'};//接收地址5


 SPI_RW_Reg(WRITE_REG + EN_AA, 0x3f);        //应答设置0x3f代表543210应答
 SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x3f);    // 使能6个通道应答
 SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, (uchar*)ip0, 5);  // 设置接收通道0地址
 SPI_RW_Reg(WRITE_REG+RX_PW_P0, RX_PLOAD_WIDTH);   //设置接收通道0地址宽度
 SPI_Write_Buf(WRITE_REG + RX_ADDR_P1, (uchar*)ip1, 1);  // RX_Addr0 same as TX_Adr for Auto.Ack
 SPI_RW_Reg(WRITE_REG+RX_PW_P1, RX_PLOAD_WIDTH);   //Number of bytes in RX payload in data pipe 0 
 SPI_Write_Buf(WRITE_REG + RX_ADDR_P2, (uchar*)ip2, 1);  // RX_Addr0 same as TX_Adr for Auto.Ack
 SPI_RW_Reg(WRITE_REG+RX_PW_P2, RX_PLOAD_WIDTH);   //设置通道2地址宽度

 SPI_Write_Buf(WRITE_REG + RX_ADDR_P3, (uchar*)ip3, 1);  // 设置接收通道3地址
 SPI_RW_Reg(WRITE_REG+RX_PW_P3, RX_PLOAD_WIDTH);   //设置通道3地址宽度

 SPI_Write_Buf(WRITE_REG + RX_ADDR_P4, (uchar*)ip4, 1);  // 设置接收通道4地址
 SPI_RW_Reg(WRITE_REG+RX_PW_P4, RX_PLOAD_WIDTH);   //设置通道4地址宽度

 SPI_Write_Buf(WRITE_REG + RX_ADDR_P5, (uchar*)ip5, 1);  // 设置接收通道5地址
 SPI_RW_Reg(WRITE_REG+RX_PW_P5, RX_PLOAD_WIDTH);   //设置通道5地址宽度

//以上为主机模块的关键配置,其他功率,频道配置,主从机对应即可。

主机接收区别各通道数据:

读取寄存器第一字节数据到careg[0],这个值就是通道地址值

以51单片机外部中断1为24l01接收数据中断

void ISR_int1(void) interrupt 2  //接受中断用于接受发送过来的数据
{
  static uchar num1,num2,num3;  
sta=SPI_Read(STATUS);// 准备读接收寄存器的第一字节
if(RX_DR) //如果收到数据
{  
SPI_Read_Buf(0x07,careg,1);
careg[0]=(careg[0]&0x0e)>>1; //读取寄存器第一字节数据到careg[0],这个值就是通道地址值
SPI_Read_Buf(RD_RX_PLOAD,RxBuf,TX_PLOAD_WIDTH);// read receive payload from RX_FIFO buffer
if(careg[0]==0) //判断为第0通道数据
  {
//接收数据 
  }     
       if(careg[0]==1)  //判断为第1通道数据
  {
     //接收数据   
  }    
     if(careg[0]==2) //判断为第2通道数据
  {
   //接收数据 
  }           
  if(careg[0]==3) //判断为第3通道数据
   {
  //接收数据 
   }           

  if(careg[0]==4) //判断为第4通道数据
   {
  //接收数据 
   }           

  if(careg[0]==5) //判断为第5通道数据
   {
  //接收数据 
   }           
 
}
if(MAX_RT)
{
SPI_RW_Reg(FLUSH_RX,0);

}
SPI_RW_Reg(WRITE_REG+STATUS,sta);// clear RX_DR or TX_DS or MAX_RT interrupt flag
  
}


无线各从机发射配置:

第0通道

 SPI_Write_Buf(WRITE_REG + TX_ADDR, (uchar*)ip0,5);     // 发射地址
 SPI_RW_Reg(WRITE_REG + EN_AA, 0x01);        //使能通道0 
 SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01);    // 使能通道0地址
 SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, (uchar*)ip0,5);  //通道0地址设置 还作为应答通道

第1通道

 SPI_Write_Buf(WRITE_REG + TX_ADDR, (uchar*)ip1,1);     // 发射地址
 SPI_RW_Reg(WRITE_REG + EN_AA, 0x03);        //使能通道0,1 
 SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x03);    // 使能通道0,1地址
 SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, (uchar*)ip1,5);  //通道0地址设置 和发射地址必须相同 还作为应答通道


第2通道

 SPI_Write_Buf(WRITE_REG + TX_ADDR, (uchar*)ip2,1);     // 发射地址
 SPI_RW_Reg(WRITE_REG + EN_AA, 0x05);        //使能通道0,2
 SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x05);    // 使能通道0,2地址
 SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, (uchar*)ip2,5);  //通道0地址设置 和发射地址必须相同 还作为应答通道


第3通道

 SPI_Write_Buf(WRITE_REG + TX_ADDR, (uchar*)ip3,1);     // 发射地址
 SPI_RW_Reg(WRITE_REG + EN_AA, 0x09);        //使能通道0,3 
 SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x09);    // 使能通道0,3地址
 SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, (uchar*)ip3,5);  //通道0地址设置 和发射地址必须相同 还作为应答通道


第4通道

 SPI_Write_Buf(WRITE_REG + TX_ADDR, (uchar*)ip4,1);     // 发射地址
 SPI_RW_Reg(WRITE_REG + EN_AA, 0x11);        //使能通道0,4
 SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x11);    // 使能通道0,4地址
 SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, (uchar*)ip4,5);  //通道0地址设置 和发射地址必须相同 还作为应答通道


第5通道

 SPI_Write_Buf(WRITE_REG + TX_ADDR, (uchar*)ip5,1);     // 发射地址
 SPI_RW_Reg(WRITE_REG + EN_AA, 0x21);        //使能通道0,5 
 SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x21);    // 使能通道0,5地址
 SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, (uchar*)ip5,5);  //通道0地址设置 和发射地址必须相同 还作为应答通道


//以上为各从机模块的关键配置,其他功率,频道配置,主从机对应即可。


 
注意:nRF24L01在确认收到数据后记录地址并以此地址为目标地址发送应答信号在发送端数据通道0被用做接收应答信号因此数据通道0的接收地址要与发送端地址相等以确保接收到正确的应答信号;


这篇关于NRF24L01无线模块六通道数据收发实现---关键参数配置说明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661347

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函