从rookie到基佬~014:Python代码 DICOM(.dcm)数据转化为NIFTI(.nii)数据

2024-01-30 09:59

本文主要是介绍从rookie到基佬~014:Python代码 DICOM(.dcm)数据转化为NIFTI(.nii)数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一天一个变弯小技巧

今日份洗脑: DICOM(.dcm)数据转化为NIFTI(.nii)数据

结论:SimpleITK:他好,我也好,汇源肾宝

医学图像的存储格式

1、NIFTI(.nii)是Neuroimaging−Informatics−Technology−Initiative即神经影像信息技术,NIFTI格式被认为ANALYZE7.5格式的替代品。NIFTI最初是用于神经成像的,但它也适用于一些其他的领域。NIFTI中一个主要的特点在于它包含了两个仿射坐标定义,这两个仿射坐标定义能够将每个体素指标(i,j,k)和空间位置(x,y,z)联系起来

2、DICOM和NIFTI之间最主要的区别在于NIFTI中的原始图像数据是以3D图像的格式储存的,而DICOM是以3D图像片段的格式储存的。这就是为什么在一些机器学习应用程序中NIFTI比DICOM更受欢迎,因为它是3D图像模型。处理一个单个的NIFTI文件,与处理上百个DICOM文件相比要轻松得多。NIFTI的每一张3D图像中只需储存两个文件,而在DICOM中则要储存更多文件。

深度学习时将DICOM(.dcm)数据转化为NIFTI(.nii)数据的动机

NIFTI的文件是三维的图像,而DICOM的文件为二维的多张图像,所以相对于DICOM文件,NIFTI文件更加易用于机器学习,训练的张数减少。

Python将DICOM(.dcm)数据转化为NIFTI(.nii)数据的代码

import numpy as np
import nibabel as nib
import os
import pandas as pd
import SimpleITK as sitk
import matplotlib.pyplot as pltdef dcm2nii_sitk(path_read, path_save):reader = sitk.ImageSeriesReader()seriesIDs = reader.GetGDCMSeriesIDs(path_read)N = len(seriesIDs)lens = np.zeros([N])for i in range(N):dicom_names = reader.GetGDCMSeriesFileNames(path_read, seriesIDs[i])lens[i] = len(dicom_names)N_MAX = np.argmax(lens)dicom_names = reader.GetGDCMSeriesFileNames(path_read, seriesIDs[N_MAX])reader.SetFileNames(dicom_names)image = reader.Execute()if not os.path.exists(path_save):os.mkdir(path_save)sitk.WriteImage(image, path_save+'/data.nii.gz')DICOMpath = r"F:\Dicomdataset"   //dicom文件夹路径
Midpath = r"F:\middataset"   //处理中间数据路径
Resultpath = r"F:\result"    //保存路径
cases = os.listdir(DICOMpath)  //获取dicom文件夹路径子文件夹名
for c in cases:  //遍历dicom文件夹路径子文件path_mid = join(DICOMpath , c)  //获取dicom文件夹下每一套数据的路径dcm2nii_sitk(path_mid , Midpath )  //将dicom转换为nii,并保存在Midpath中shutil.copy(join(Midpath , "data.nii.gz"), join(Resultpath , c + ".nii.gz"))//重新对保存后的nii文件名进行命名,并复制到Resultpath下

如有错误,欢迎各位大侠莅临指正,顺颂 时祺。

在这里插入图片描述

这篇关于从rookie到基佬~014:Python代码 DICOM(.dcm)数据转化为NIFTI(.nii)数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/659878

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright