基于coco数据集的人体关键点分布示意图与数据集解析

2024-01-29 13:30

本文主要是介绍基于coco数据集的人体关键点分布示意图与数据集解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文绘制了coco中人体姿态关键点的分布示意图,并解释了每个关键点的含义。

目录

1、数据集介绍

2、示意图

3、数据集解析


1、数据集介绍

        有pose标注的部分数据样式如下:

        每张图中有若干个segment标注,每个标注包含的信息如下:


{"segmentation":[[0.43,299.58,2.25,299.58,9.05,287.78,32.66,299.13,39.01,296.4,48.09,290.96,43.55,286.87,62.16,291.86,61.25,286.87,37.65,279.15,18.13,272.8,0,262.81]],
"num_keypoints":1,
"area":1037.7819,
"iscrowd":0,
"keypoints":[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,277,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
"image_id":397133,
"bbox":[0,262.81,62.16,36.77],
"category_id":1,
"id":1218137}

        我们所需要的就是其中的'keypoints'部分,每三个数字为一组,代表一个关键点,三个值分别为x坐标、y坐标、标志位,其中,标志位有三个值:

  • 0:未标注
  • 1:标注,但被遮挡
  • 2:标注,未遮挡

2、示意图

        下图中,共17个关节点(鼻子x1、眼睛x2、耳朵x2、肩部x2、肘部x2、手腕x2、髋部x2、膝关节x2、脚腕x2):

3、数据集解析

        我们从coco2017中解析数据集并保存为YOLO格式,这种格式可以直接用YOLOv5或者YOLOv8进行训练:


"""
get person instance segmentation annotations from coco data set.
"""import argparse
import osimport numpy as np
import tqdm
import shutil
from pycocotools.coco import COCOdef main(args):annotation_file = os.path.join(args.input_dir, 'annotations', 'person_keypoints_{}.json'.format(args.split))# init pathsubdir = args.split[:-4] + '_coco2'img_save_dir = os.path.join(args.output_dir, subdir, 'images')txt_save_dir = os.path.join(args.output_dir, subdir, 'labels')os.makedirs(img_save_dir, exist_ok=True)os.makedirs(txt_save_dir, exist_ok=True)coco = COCO(annotation_file)catIds = coco.getCatIds()imgIds = coco.getImgIds()print("catIds len:{}, imgIds len:{}".format(len(catIds), len(imgIds)))for imgId in tqdm.tqdm(imgIds, ncols=100):img = coco.loadImgs(imgId)[0]annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None)anns = coco.loadAnns(annIds)if len(annIds) > 0:img_origin_path = os.path.join(args.input_dir, args.split, img['file_name'])img_height, img_width = img['height'], img['width']lines = []for ann in anns:# if ann['iscrowd'] != 0 or ann['category_id'] != 1:#     continuebbox = np.asarray(ann['bbox'], dtype=float)  # x1y1whbbox[::2] = bbox[::2] / img_widthbbox[1::2] = bbox[1::2] / img_height# x1y1wh2xywhbbox[0] += bbox[2] / 2bbox[1] += bbox[3] / 2bbox_str = [str(b) for b in bbox]keypoints = np.asarray(ann['keypoints'], dtype=float)keypoints[::3] = keypoints[::3] / img_widthkeypoints[1::3] = keypoints[1::3] / img_heightkeypoints_str = [str(k) for k in keypoints]line = '{} {} {}'.format(0, ' '.join(bbox_str), ' '.join(keypoints_str))lines.append(line)if len(lines) > 0:txt_output_path = os.path.join(txt_save_dir, os.path.splitext(img['file_name'])[0] + '.txt')with open(txt_output_path, 'a') as f:for line in lines:f.write(line + '\n')img_output_path = os.path.join(img_save_dir, img['file_name'])shutil.copy(img_origin_path, img_output_path)def get_args():parser = argparse.ArgumentParser()parser.add_argument("--input_dir", default="/data/public_datasets/coco2017", type=str,help="input dataset directory")parser.add_argument("--split", default="val2017", type=str,help="train2017 or val2017")parser.add_argument("--output_dir", default="/data/datasets/person_pose", type=str,help="output dataset directory")return parser.parse_args()if __name__ == '__main__':args = get_args()main(args)

参考:

COCO - Common Objects in Context

这篇关于基于coco数据集的人体关键点分布示意图与数据集解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/657058

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

全面解析HTML5中Checkbox标签

《全面解析HTML5中Checkbox标签》Checkbox是HTML5中非常重要的表单元素之一,通过合理使用其属性和样式自定义方法,可以为用户提供丰富多样的交互体验,这篇文章给大家介绍HTML5中C... 在html5中,Checkbox(复选框)是一种常用的表单元素,允许用户在一组选项中选择多个项目。本

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解