Spark——Spark读写Greenplum/Greenplum-Spark Connector高速写Greenplum

2024-01-28 15:20

本文主要是介绍Spark——Spark读写Greenplum/Greenplum-Spark Connector高速写Greenplum,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 问题背景
  • 解决方式
  • 代码实现
    • Spark写Greenplum
    • Spark读Greenplum
  • 参考

问题背景

通过数据平台上的DataX把Hive表数据同步至Greenplum(因为DataX原生不支持Greenplum Writer,只能采用PostgreSQL驱动的方式),但是同步速度太慢了,<100Kb/s(DataX服务器和Greenplum服务器都在内网,实测服务器间传输文件速率可以达到170Mb/s+),根本没法用。

解决方式

查看Greenplum官网,给出了以下几种将外部数据写入Greenplum方式:

  • JDBC:JDBC方式,写大数据量会很慢。
  • gpload:适合写大数据量数据,能并行写入。但其缺点是需要安装客户端,包括gpfdist等依赖,安装起来很麻烦。需要了解可以参考gpload。
  • Greenplum-Spark Connector:基于Spark并行处理,并行写入Greenplum,并提供了并行读取的接口。

而我们之前采用的PostgreSQL驱动的方式就是因为使用了JDBC,导致写入速度非常慢。综合官网提供的这3中方式,我们最终选择了Greenplum-Spark Connector这种方式,但是只提供了Spark2.3版本支持,其他版本未验证过。

Greenplum-Spark Connector具体的读写架构和流程,请参考Greenplum官网文档:https://cn.greenplum.org/greenplum-spark-connector/。

代码实现

Greenplum-Spark Connector需要引入两个依赖包:

  • greenplum-spark_2.11-2.3.0.jar
  • postgresql-42.2.27.jar

greenplum-spark_2.11-2.3.0.jar无法通过Maven自动下载,需要到上面网址手动下载,且要先注册网址账号才允许下载。

Spark写Greenplum

代码实现:

package com.demoimport org.apache.spark.sql.{SaveMode, SparkSession}import java.time.LocalDateTime
import java.time.format.DateTimeFormatterobject SparkWriteGreenplum {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("Spark to Greenplum").enableHiveSupport().getOrCreate()spark.sparkContext.setLogLevel("INFO")// main函数传参数获取表名val tableName = args(0)val days = args(1).toLong/** spark写greenplum *///Greenplum配置信息val gscWriteOptionMap = Map("url" -> "jdbc:postgresql://host:5432/db","user" -> "u","password" -> "p","dbschema" -> "schema","dbtable" -> "table")// Hiv表分区val ds = LocalDateTime.now().minusDays(days).format(DateTimeFormatter.ofPattern("yyyyMMdd"))// 读取Hive表val df = spark.sql("select * from db." + tableName + " where ds = " + ds)// Dataframe写Greenplumdf.write.format("greenplum").mode(SaveMode.Overwrite).options(gscWriteOptionMap).save()spark.stop()}
}

最终以4个executor、每个executor 1核1G执行Spark任务,1400w+条数据,3分钟左右就导完了,效果提升非常明显。

Spark读Greenplum

    // spark读greenplumval gscReadOptionMap = Map("url" -> "jdbc:postgresql://host:5432/db","user" -> "u","password" -> "p","dbschema" -> "sc","dbtable" -> "table")val df: DataFrame = spark.read.format("greenplum").options(gscReadOptionMap).load()df.show()

参考

  1. https://cn.greenplum.org/greenplum-spark-connector/
  2. https://greenplum-spark-connector.readthedocs.io/en/latest/Write-data-from-Spark-into-Greenplum.html
  3. https://network.pivotal.io/products/vmware-greenplum#/releases/1427678/file_groups/17497

这篇关于Spark——Spark读写Greenplum/Greenplum-Spark Connector高速写Greenplum的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/654032

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

C#读写文本文件的多种方式详解

《C#读写文本文件的多种方式详解》这篇文章主要为大家详细介绍了C#中各种常用的文件读写方式,包括文本文件,二进制文件、CSV文件、JSON文件等,有需要的小伙伴可以参考一下... 目录一、文本文件读写1. 使用 File 类的静态方法2. 使用 StreamReader 和 StreamWriter二、二进

MySQL主从复制与读写分离的用法解读

《MySQL主从复制与读写分离的用法解读》:本文主要介绍MySQL主从复制与读写分离的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、主从复制mysql主从复制原理实验案例二、读写分离实验案例安装并配置mycat 软件设置mycat读写分离验证mycat读

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

ShardingSphere之读写分离方式

《ShardingSphere之读写分离方式》:本文主要介绍ShardingSphere之读写分离方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录ShardingSphere-读写分离读写分离mysql主从集群创建 user 表主节点执行见表语句项目代码读写分

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的