Python实现高效地读写大型文件

2025-01-22 16:50

本文主要是介绍Python实现高效地读写大型文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下...

上一篇给大家介绍如何使用 python 进行文件读写操作的方法,问题来了,如何读写的是大型文件,有没有什么方法来提高效率呢,不要捉急,这一篇来聊聊如何在Python中高效地读写大型文件。

以下是在 Python 中高效读写大型文件的一些方法:

一、逐行读取大型文件

def read_large_file_line_by_line(file_path):
    with open(file_path, 'r') as file:
        for line in file:
            # 处理每一行的数据,这里仅打印
            print(line.strip())
  • with open(file_path, 'r') as file:使用 with 语句打开文件,确保文件在使用完毕后自动关闭。
  • for line in file:文件对象是可迭代的,逐行读取文件内容,避免一次性将整个文件读入内存,节省内存空间,适用于大型文本文件。

二、分块读取大型文件

def read_large_file_in_chunks(file_path, chunk_size=1024):
    with open(file_path, 'r') as file:
        while True:
            data = file.read(chunk_size)
            if not data:
                break
            # 处理读取到的数据块,这里仅打印
            print(data)
  • file.read(chunk_size):每次读取指定大小(chunk编程_size)的数据块,循环读取直到文件结束。
  • chunk_size 可以根据实际情况调整,一般根据文件大小和可用内存来选择合适的值。

三、使用 mmap 模块进行内存映射文件操作(适用于大文件)

import mmap

def read_large_file_with_mmap(file_path):
    with openandroid(file_path, 'r') as file:
        wihttp://www.chinasem.cnth mmap.mmap(file.fileno(), 0, Access=mmap.ACCESS_READ) as javascriptmmap_obj:
            # 处理映射的数据,这里仅打印
            print(mmap_obj.readline())
  • mmap.mmap(file.fileno(), 0, access=mmap.ACCESS_READ):将文件映射到内存中,实现文件的高效读写,fileno() 方法获取文件描述符。
  • 可以像操作字符串一样操作 mmap_obj,避免了频繁的文件 I/O 操作,提高性能。

四、使用 pandas 分块处理大型 CSV 文件(适用于 CSV 文件)

import pandas as pd

def read_large_csv_in_chunks(csv_file_path):
    chunk_size = 100000  # 每块的行数
    for chunk in pd.read_csv(csv_file_path, chunksize=chunk_size):
        # 处理数据块,这里仅打印
        print(chunk)
  • pd.read_csv(csv_file_path, chunksize=chunk_size):将 CSV 文件按块读取,chunksize 为每块的行数。
  • 可以对每个 chunk 进行数据处理,如数据清洗、分析等操作,避免一次性加载整个文件。

五、使用 numpy 分块处理大型二进制文件(适用于二进制文件)

import numpy as np

def read_large_binary_in_chunks(binary_file_path, chunk_size=1024):
    with open(binary_file_path, 'rb') as file:
        while True:
            data = np.fromfile(file, dtype=np.float32, count=chunk_size)
            if data.size == 0:
                break
            # 处理数据块,这里仅打印
            print(data)
  • np.fromfile(file, dtype=np.float32, count=chunk_size):从文件中读取二进制数据,dtype 为数据类型,count 为元素数量。
  • 可以根据文件的存储数据类型调整 dtype,按块读取二进制文件。

六、使用 itertools 模块进行迭代处理(适用于文本文件)

import itertools

def read_large_file_with_itertools(file_path, chunk_size=1024):
    with open(file_path, 'r') as file:
        for chunk in itertools.zip_longest(*[iter(file)]*chunk_size):
            chunk = [line.strip() for line in chunk if line]
            # 处理数据块,这里仅打印
            print(chunk)

itertools.zip_longest(*[iter(file)]*chunk_size):将文件迭代器分组,每组 chunk_size 行,方便分块处理。

七、使用 linecache 模块逐行读取大型文件(适用于文本文件)

import linecache

def read_large_file_with_linecache(file_path, line_number):
    line = linecache.getline(file_path, line_number)
    # 处理指定行的数据,这里仅打印
    print(line.strip())

linecache.getline(file_path, line_number):从文件中获取指定行的数据,适用于只需要读取文件中某些行的情况,避免读取整个文件。

总结

在处理大型文件时,根据文件类型和操作需求,可灵活使用上述方法,避免一次性将整个文件加载到内存中,从而提高程序的性能和稳定性。同时,可以结合不同的模块和函数,实现复杂的数据处理和分析任务。好了,赶快收藏起来吧,实际工作中你一定会用得到。

到此这篇关于Python实现高效地读写大型文件的文章就介绍到这了,更多相关Python读写大型文件内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Python实现高效地读写大型文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153187

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法