算法学习系列(二十七):欧拉函数、欧拉定理、费马小定理

2024-01-27 18:36

本文主要是介绍算法学习系列(二十七):欧拉函数、欧拉定理、费马小定理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 引言
  • 一、欧拉函数
    • 1.概念
    • 2.求每个数的欧拉函数
  • 二、线性筛法求欧拉函数
  • 三、欧拉定理,费马小定理

引言

本文主要介绍欧拉函数、线性筛法求欧拉函数,以及公式是怎样推导出来的,并且介绍了欧拉定理,以及费马小定理是怎样被推导出来的。

一、欧拉函数

1.概念

欧拉函数 ϕ ( N ) : 欧拉函数\phi(N): 欧拉函数ϕ(N) 1 ~ N中与N互质的数的个数,(互质:公约数只有1的两个自然数)
N = p 1 α 1 ⋅ p 2 α 2 ⋅ p 3 α 3 ⋅ ⋯ p k α k , ( p i 为质数 ) N = p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot p_{3}^{\alpha_{3}} \cdot \cdots p_{k}^{\alpha_{k}},(p_{i}为质数) N=p1α1p2α2p3α3pkαk,(pi为质数) ϕ ( N ) = N ⋅ ( 1 − 1 1 − p 1 ) ⋅ ( 1 − 1 1 − p 2 ) ⋯ ( 1 − 1 1 − p k ) \phi(N)=N\cdot(1-\frac{1}{1-p_{1}})\cdot(1-\frac{1}{1-p_{2}})\cdots(1-\frac{1}{1-p_{k}}) ϕ(N)=N(11p11)(11p21)(11pk1)

2.求每个数的欧拉函数

题目描述:

给定 n 个正整数 ai,请你求出每个数的欧拉函数。欧拉函数的定义
1∼N 中与 N 互质的数的个数被称为欧拉函数,记为 ϕ(N)。
若在算数基本定理中,N=pa11pa22…pamm,则:ϕ(N) = N×p1−1p1×p2−1p2×…×pm−1pm输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个正整数 ai。输出格式
输出共 n 行,每行输出一个正整数 ai 的欧拉函数。数据范围
1≤n≤100,1≤ai≤2×109输入样例:
3
3
6
8
输出样例:
2
2
4

示例代码:

#include <cstdio>
#include <iostream>using namespace std;int get_euler(int n)
{int res = n;for(int i = 2; i <= n / i; ++i){if(n % i == 0){res = res / i * (i - 1);  //为避免小数while(n % i == 0) n /= i;}}if(n > 1) res = res / n * (n - 1);return res;
}int main()
{int n;scanf("%d", &n);while(n--){int a;scanf("%d", &a);int res = get_euler(a);printf("%d\n", res);}return 0;
}

二、线性筛法求欧拉函数

当 i 为质数: ϕ ( i ) = i − 1 当i为质数:\phi(i)=i-1 i为质数:ϕ(i)=i1
当 i m o d p r i m e s [ j ] = 0 , 当i \ mod \ primes[j] = 0, i mod primes[j]=0, ϕ ( i ∗ p r i m e s [ j ] ) = i ∗ p r i m e s [ j ] ∗ ( 1 − 1 1 − p 1 ) ∗ ( 1 − 1 1 − p 2 ) ⋯ ( 1 − 1 1 − p k ) = p r i m e s [ j ] ∗ ϕ ( i ) \phi(i*primes[j])= i\ *\ primes[j]\ *\ (1-\frac{1}{1-p_{1}})\ *\ (1-\frac{1}{1-p_{2}})\cdots\ (1-\frac{1}{1-p_{k}}) = primes[j] * \phi(i) ϕ(iprimes[j])=i  primes[j]  (11p11)  (11p21) (11pk1)=primes[j]ϕ(i)
当 i m o d p r i m e s [ j ] ! = 0 , 当i \ mod \ primes[j]\ !=\ 0, i mod primes[j] != 0, ϕ ( i ∗ p r i m e s [ j ] ) = i ∗ p r i m e s [ j ] ∗ ( 1 − 1 1 − p 1 ) ∗ ( 1 − 1 1 − p 2 ) ⋯ ( 1 − 1 1 − p k ) ∗ ( 1 − 1 1 − p r i m e s [ j ] ) = ( p r i m e s [ j ] − 1 ) ∗ ϕ ( i ) \phi(i*primes[j])= i\ *\ primes[j]\ *\ (1-\frac{1}{1-p_{1}})\ *\ (1-\frac{1}{1-p_{2}})\cdots\ (1-\frac{1}{1-p_{k}})\ *\ (1-\frac{1}{1-primes[j]}) = (primes[j]-1)\ *\ \phi(i) ϕ(iprimes[j])=i  primes[j]  (11p11)  (11p21) (11pk1)  (11primes[j]1)=(primes[j]1)  ϕ(i)

题目描述:

给定一个正整数 n,求 1∼n 中每个数的欧拉函数之和。输入格式
共一行,包含一个整数 n。输出格式
共一行,包含一个整数,表示 1∼n 中每个数的欧拉函数之和。数据范围
1≤n≤106输入样例:
6
输出样例:
12

示例代码:

#include <cstdio>
#include <iostream>using namespace std;typedef long long LL;const int N = 1e6+10;int primes[N], cnt;
int phi[N];
bool st[N];LL get_eulers(int n)
{phi[1] = 1;for(int i = 2; i <= n; ++i){if(!st[i]){phi[i] = i - 1;primes[cnt++] = i;}for(int j = 0; primes[j] * i <= n; ++j){st[primes[j] * i] = true;if(i % primes[j] == 0){phi[i * primes[j]] = phi[i] * primes[j];break;}phi[i * primes[j]] = phi[i] * (primes[j] - 1);}}LL res = 0;for(int i = 1; i <= n; ++i) res += phi[i];return res;
}int main()
{int n;scanf("%d", &n);LL res = get_eulers(n);printf("%lld\n", res);return 0;
}

三、欧拉定理,费马小定理

欧拉定理:若 a 与 n 互质,则 a ϕ ( n ) ≡ 1 ( m o d n ) 欧拉定理:若a与n互质,则a^{\phi(n)} \equiv 1 \pmod n 欧拉定理:若an互质,则aϕ(n)1(modn) 费马小定理: a p − 1 ≡ 1 ( m o d p ) (当 p 为质数,则 ϕ ( p ) = p − 1 ) 费马小定理:a^{p-1} \equiv 1 \pmod p(当p为质数,则\phi(p)=p-1) 费马小定理:ap11(modp)(当p为质数,则ϕ(p)=p1

这篇关于算法学习系列(二十七):欧拉函数、欧拉定理、费马小定理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/651131

相关文章

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(