基于蝗虫优化的KNN分类特征选择算法的matlab仿真

2024-01-25 05:04

本文主要是介绍基于蝗虫优化的KNN分类特征选择算法的matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 KNN分类器基本原理

4.2 特征选择的重要性

4.3 蝗虫优化算法(GOA)

5.完整程序


1.程序功能描述

       基于蝗虫优化的KNN分类特征选择算法。使用蝗虫优化算法,选择最佳的特征,进行KNN分类,从而提高KNN分类的精度。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

..........................................................
[idx1,~,idx2]= dividerand(rows,0.8,0,0.2);
Ptrain    = PP(idx1,:);   %training data
Ptest     = PP(idx2,:);     %testing data
Ttrain    = TT(idx1);            %training TT
Ttest     = TT(idx2);              %testing TT
%KNN 
idx_m     = fitcknn(Ptrain,Ttrain,'NumNeighbors',5,'Standardize',1);
Tknn      = predict(idx_m,Ptest);
cp        = classperf(Ttest,Tknn);
err       = cp.ErrorRate;
accuracy1 = cp.CorrectRate;dim=size(PP,2);
lb=0;
ub=1;%GOA优化过程
Pnum      = 50;  %种群个数
iteration = 100; %迭代次数
[~,Target_pos,ybest]= func_GOA(Pnum,iteration,lb,ub,dim,Ptrain,Ptest,Ttrain,Ttest);[~,accuracy2,~]     = func_Eval(Target_pos,Ptrain,Ptest,Ttrain,Ttest);                                                               figure;
plot(ybest);
xlabel('GOA优化迭代过程')
ylabel('适应度值' )figure
bar([accuracy1,accuracy2])
xlabel('1.Predicted by All featrure,  2.Predcited by GOA select featrure')
ylabel('accuracy' )figure
bar([size(Ptest,2),numel(find(Target_pos))])
title('特征选择个数')
xlabel('1.Total Features,    2.Features after GOA Selection');
22   

4.本算法原理

          基于蝗虫优化的KNN(K-最近邻)分类特征选择是一种结合了蝗虫优化算法(Grasshopper Optimization Algorithm, GOA)和KNN分类器的特征选择方法。该方法旨在通过蝗虫优化算法选择最优特征子集,从而提高KNN分类器的分类性能。

4.1 KNN分类器基本原理

       何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:分析一个人时,我们不妨观察和他最亲密的几个人。同理的,在判定一个未知事物时,可以观察离它最近的几个样本,这就是KNN(k最近邻)的方法。简单来说,KNN可以看成:有那么一堆你已经知道分类的数据,然后当一个新数据进入的时候,就开始跟训练数据里的每个点求距离,然后挑出离这个数据最近的K个点,看看这K个点属于什么类型,然后用少数服从多数的原则,给新数据归类。

         KNN分类器是一种基于实例的学习算法,其工作原理是找到一个新数据点在训练数据集中的K个最近邻居,并根据这些邻居的类别来进行投票,从而确定新数据点的类别。

①初始化距离为最大值;
②计算未知样本和每个训练样本的距离dist;
③得到目前K个最临近样本中的最大距离maxdist;
④如果dist小于maxdist,则将该训练样本作为K-最近邻样本;
⑤重复步骤2、3、4.直到所有未知样本和所有训练样本的距离都算完;
⑥统计K-最近邻样本中每个类标号出现的次数;

⑦选择出现频率最大的类标作为未知样本的类标号。

4.2 特征选择的重要性

       在实际应用中,数据集往往包含许多特征,但并不是所有特征都对分类任务有用。冗余和不相关的特征可能会降低分类器的性能,增加计算复杂度。因此,特征选择是一个重要的预处理步骤,它旨在从原始特征集中选择出最有代表性的特征子集。

4.3 蝗虫优化算法(GOA)

        蝗虫优化算法是一种模拟蝗虫群体行为的优化算法。在GOA中,每个蝗虫代表一个解(即一个特征子集),蝗虫的位置通过模拟蝗虫群体的社会交互和自适应行为进行更新。

       在基于蝗虫优化的KNN分类特征选择中,蝗虫的位置代表一个特征子集,适应度函数通常定义为KNN分类器在验证集上的分类准确率。算法的基本步骤如下:

  1. 初始化蝗虫群体的位置(即特征子集)。
  2. 计算每个蝗虫的适应度值(即KNN分类器的分类准确率)。
  3. 根据适应度值更新蝗虫的位置。
  4. 如果满足停止条件(如达到最大迭代次数或解的质量满足要求),则停止算法;否则,转到步骤2。

最终,算法将返回具有最高适应度值的蝗虫的位置,即最优特征子集。

5.完整程序

VVV

这篇关于基于蝗虫优化的KNN分类特征选择算法的matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642160

相关文章

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索