使用 LlamaIndex 部署本地 Mistral-7b 大模型实现 RAG

2024-01-24 23:36

本文主要是介绍使用 LlamaIndex 部署本地 Mistral-7b 大模型实现 RAG,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理

LlamaIndex的文档链接:Using LLMs - LlamaIndex 🦙 0.9.33

LlamaIndex 的一般使用模式如下:

  1. 加载文档(手动或通过数据加载器)
  2. 将文档解析为节点
  3. 构建索引(来自节点或文档)
  4. (可选,高级)在其他索引之上构建索引
  5. 查询索引

默认情况下,LlamaIndex 使用 OpenAI 的text-davinci-003模型,然而由于 OpenAI 的网站在国内无法访问,故使用本地下载好的 🐋 Mistral-7B-OpenOrca 🐋 模型代替之。
模型的链接如下:
Open-Orca/Mistral-7B-OpenOrca · Hugging Face

示例

HuggingFaceLLM 的参数如下:

HuggingFaceLLM - LlamaIndex 🦙 0.9.33

generate_kwargs 就是在生成时传递给模型的参数,具体可以看:

Generation 说明

首先准备一段文字,任意内容皆可,我准备的是关于【科学指南针】服务机构的介绍,摘自下面的网站:

科学指南针科研推出论文阅读,管理神器,强大AI赋能,轻松科研_服务_工作台_用户

科学指南针,一家始终致力于为科研工作者提供专业、快捷、全方位的检测及科研服务的大型科研服务机构,近日重磅推出全新产品「科研工作台」——一款集论文阅读、管理、分析于一体的AI赋能神器。这款产品的推出,将AI技术与科研工作深度融合,为科研工作者提供前所未有的便利。
「科研工作台」不仅具备自动解读论文研究目的、主要内容、实验过程等强大功能,还支持一键定位原文精读。更重要的是,它配备的AI阅读助手可以基于论文内容,快速回答用户提出的任何问题,帮助科研人员快速获取所需信息。这一创新性的设计,无疑将极大地提升科研工作的效率。
此外,「科研工作台」还支持分组/标签双体系管理文献。用户可以根据自己的需求,自定义建立分组和子分组进行文献管理。同时,系统会自动根据关键信息为文献打标签,并允许用户自定义新增或删除标签。通过这一功能,用户可以快速筛选出自己需要的文献。
自2014年成立以来,科学指南针始终以全心全意服务科研,助力全球科技创新为使命。经过数年的努力,公司已建立起包括材料测试、环境检测、生物服务、行业解决方案、科研绘图、模拟计算、数据分析、论文服务、试剂耗材、指南针学院等在内的科研产品和服务矩阵。如今,「科研工作台」的推出,再次证明了科学指南针在推动创新方面的能力。
值得一提的是,科学指南针的生物实验室已经取得了实验动物许可证,环境实验室和南京材料实验室先后获得了中国计量认证证书(CMA)。此外,南京材料实验室还获得了ISO三体系认证。这些资质和认证,不仅证明了科学指南针在科研服务领域的专业性和可靠性,也为其未来的发展奠定了坚实的基础。
展望未来,科学指南针的愿景是成为世界级科研服务机构。他们坚信,只要有科研的地方,就应有科学指南针的存在。而「科研工作台」的推出,正是实现这一愿景的重要一步。这款产品将为全球科研工作者提供更为便捷、高效的服务,助力科研事业的发展。
在新的历史起点上,科学指南针将继续秉承全心全意服务科研的使命,不断创新、追求卓越。我们期待着他们在未来的发展中,继续为全球科技创新做出更大的贡献

代码如下,这里使用了 HuggingFaceLLM 包来加载本地的 LLM。使用 load_in_4bit 对模型进行量化。
embed_model 选用了 “local:BAAI/bge-large-zh-v1.5”

from llama_index import VectorStoreIndex, SimpleDirectoryReader
from llama_index import ServiceContext
from llama_index.llms import HuggingFaceLLM
import torch
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer
from llama_index.prompts import PromptTemplate
from llama_index import set_global_service_contextquantization_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_compute_dtype=torch.float16,bnb_4bit_quant_type="nf4",bnb_4bit_use_double_quant=True,
)model_name = "/root/autodl-tmp/kdy/models/Mistral-7B-OpenOrca"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
question = [{"role": "user", "content": "{query_str}"},
]
llm = HuggingFaceLLM(  model=model,tokenizer=tokenizer,query_wrapper_prompt=PromptTemplate(tokenizer.apply_chat_template(question, tokenize=False)),context_window=3900,max_new_tokens=500,model_kwargs={"quantization_config": quantization_config},generate_kwargs={"temperature": 0.2, "top_k": 5, "do_sample": True, "top_p": 0.95},device_map="auto",
)
service_context = ServiceContext.from_defaults(llm=llm, embed_model="local:BAAI/bge-large-zh-v1.5")
set_global_service_context(service_context)documents = SimpleDirectoryReader("/root/autodl-tmp/kdy/RAG/data").load_data()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir="./storage")query_engine = index.as_query_engine(streaming=True, similarity_top_k=3)
response_stream = query_engine.query("科学指南针提供哪些服务?")
response_stream.print_response_stream()
print()

其中documents = SimpleDirectoryReader("/root/autodl-tmp/kdy/RAG/data").load_data() 中的 data 文件夹下存放自己提供的内容。

输出如下:
在这里插入图片描述

response_stream.print_response_stream() 方法会将答案逐字输出,如下面的 GIF 所示。
在这里插入图片描述

参考文献:

Using LLMs - LlamaIndex 🦙 0.9.33

Google Colaboratory

这篇关于使用 LlamaIndex 部署本地 Mistral-7b 大模型实现 RAG的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/641386

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符