Pytorch入门——基础知识及实现两层网络

2024-01-24 19:48

本文主要是介绍Pytorch入门——基础知识及实现两层网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pytorch基础知识

内容来源:
B站视频——最好的PyTorch的入门与实战教程(16小时实战)

import torch
import numpy as nptorch.empty(5,3)  # 创建未初始化的矩阵x1 = torch.rand(5,3)  # 随机初始化矩阵x2 = torch.zeros(5,3)  # 全部为0矩阵x3 = torch.zeros(5,3, dtype=torch.long)  # 数据类型变为long
# x3 = torch.zeros(5,3).long() 效果一样x4 = torch.tensor([5.5, 3])  # 从数据直接构建tensorx5 = x4.new_ones(5,3)  # 根据已有tensor构建一个tensor,这些方法会重用原来tensor的特征。例如数据类型x6 = x4.new_ones(5,3, dtype=torch.double)torch.rand_like(x5, dtype=torch.float)# 得到tensor的形状
x5.shape
x5.size# 运算
y1 = torch.rand(5,3)
print(y1)
# add
x1 + y1
torch.add(x1, y1)result = torch.empty(5,3)
torch.add(x1, y1, out=result)
print(result)  # 把输出作为一个变量# In-place operation
y1.add_(x1)  # 把操作保存在y1里面
print(y1)
# 任何in-place运算都会以_结尾。  x.copy_(y)   x.t_()会改变x# 各种Numpy的indexing都可以在Pytorch tensor上使用
print(y1[:, 1:])  # 把所有行留下,把第一列之后的留下,相当于第零列舍去
print(y1[1:, 1:])  # 舍弃第零行,第零列# 如果希望resize一个tensor,可以使用torch.view
x7 = torch.randn(4,4)
y2 = x7.view(16)  # 变成16维
y3 = x7.view(2,8)  # 2x8 matrix
y3 = x7.view(2,-1)  # 会自动算出对应的为数,16/2 = 8, 但不能写两个-1
# 要能被16整除,因此出现(-1, 5)会报错# 若只有一个元素的tensor,使用.item()可以把里面的value变成python数值
x8 = torch.randn(1)
print(x8.data)  # 仍返回一个tensor
print(x8.grad)  # 返回一个grad
print(x8.item())  # 返回一个数字
print(y3.transpose(1, 0))  # 将y3进行转置# 在Numpy和Tensor之间转换
# Torch Tensor 和 Numpy Array 共享内存,改变其中一项另一项也改变
a = torch.ones(5)
b = a.numpy()
b[1] = 2
print(a)# 把Numpy ndarry转成Torch Tensor
c = np.ones(5)
d = torch.from_numpy(c)
np.add(c, 1, out = c)
print(c)
print(d)# CUDA Tensors
if torch.cuda.is_available():device = torch.device("cuda")          # a CUDA device objecty = torch.ones_like(x7, device=device)  # directly create a tensor on GPUx7 = x7.to(device)                       # or just use strings ``.to("cuda")``z = x7 + yprint(z)print(z.to("cpu", torch.double))       # ``.to`` can also change dtype together!# numpy是在CPU上操作的
# y.to("cpu").data.numpy()
# y.cpu().data.numpy()

使用Numpy实现两层模型

'''
用numpy实现两层神经网络,一个隐藏层,没有bias,用来从x预测y,使用L2 loss
h = W_1X + b_1
a = max(0,h)
y_hat = w_2a + b_2numpy ndarray 是一个普通的n维array
'''
import numpy as npN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)learning_rate = 1e-6
for t in range(500):  # forward passh = x.dot(w1)    # N*H  点积h_relu = np.maximum(h, 0)  # N*Hy_pred = h_relu.dot(w2)  # N*D_out# compute lossloss = np.square(y_pred - y).sum()print(t, loss)# backward pass, compute the gradientgrad_y_pred = 2.0*(y_pred - y)grad_w2 = h_relu.T.dot(grad_y_pred)grad_h_relu = grad_y_pred.dot(w2.T)grad_h = grad_h_relu.copy()grad_h[h<0] = 0grad_w1 = x.T.dot(grad_h)# update weights of w1 and w2w1 -= learning_rate*grad_w1w2 -= learning_rate*grad_w2

使用pytorch实现两层模型

手动实现反向传播及更新

import torchN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)w1 = torch.randn(D_in, H)
w2 = torch.randn(H, D_out)learning_rate = 1e-6
for t in range(500):  # forward passh = x.mm(w1)    # N*H  matrix multipulication点积h_relu = h.clamp(min=0)  # N*H  类似于夹子,把值夹在min和max之间y_pred = h_relu.mm(w2)  # N*D_out# compute lossloss = (y_pred - y).pow(2).sum().item()  # 要转成数字print(t, loss)# backward pass, compute the gradientgrad_y_pred = 2.0*(y_pred - y)grad_w2 = h_relu.t().mm(grad_y_pred)grad_h_relu = grad_y_pred.mm(w2.T)grad_h = grad_h_relu.clone()grad_h[h<0] = 0grad_w1 = x.t().mm(grad_h)# update weights of w1 and w2w1 -= learning_rate*grad_w1w2 -= learning_rate*grad_w2

自动实现反向传播

import torchN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)learning_rate = 1e-6
for t in range(500):  # forward pass# h = x.mm(w1)    # N*H  matrix multipulication点积# h_relu = h.clamp(min=0)  # N*H  类似于夹子,把值夹在min和max之间y_pred = x.mm(w1).clamp(min=0).mm(w2)  # N*D_out# compute lossloss = (y_pred - y).pow(2).sum()  #computation graphprint(t, loss.item())# backward pass, compute the gradientloss.backward()# update weights of w1 and w2# 为了不让计算图占内存,不会记住w1和w2的值with torch.no_grad():w1 -= learning_rate*w1.gradw2 -= learning_rate*w2.gradw1.grad.zero_()  # 避免多次计算累加导致错误w2.grad.zero_()

使用pytorch的nn库实现两层网络

'''
用nn库来构建网络 neural network
用autograd来构建计算图和计算gradients
'''
import torch
import torch.nn as nnN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)model = torch.nn.Sequential(torch.nn.Linear(D_in, H),  # w_1*x + b_1torch.nn.ReLU(),torch.nn.Linear(H, D_out)
)# 把初始化变成normal distribution会让模型效果好很多
torch.nn.init.normal_(model[0].weight)
torch.nn.init.normal_(model[2].weight)# model = model.cuda()loss_fn = nn.MSELoss(reduction='sum')learning_rate = 1e-6
for t in range(500):  # forward passy_pred = model(x)  # model.forward()# compute lossloss = loss_fn(y_pred, y)  # computation graphprint(t, loss.item())model.zero_grad()  # 将梯度清零避免叠加# backward pass, compute the gradientloss.backward()# update weights of w1 and w2with torch.no_grad():for param in model.parameters():param -= learning_rate*param.grad

使用optim进行自动优化

'''
用nn库来构建网络 neural network
用autograd来构建计算图和计算gradients
'''
import torch
import torch.nn as nnN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)model = torch.nn.Sequential(torch.nn.Linear(D_in, H),  # w_1*x + b_1torch.nn.ReLU(),torch.nn.Linear(H, D_out)
)# model = model.cuda()loss_fn = nn.MSELoss(reduction='sum')
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Adam 的学习率一般在1e-3到1e-4
# 若用SGD,则需要把初始值做一下nomalization,不知道为什么,但是loss会变得很小,玄学for t in range(500):  # forward passy_pred = model(x)  # model.forward()# compute lossloss = loss_fn(y_pred, y)  # computation graphprint(t, loss.item())optimizer.zero_grad()  # 将梯度清零避免叠加# backward pass, compute the gradientloss.backward()# update model parametersoptimizer.step()  # optimizer会更新

使用自定义神经网络

'''
用nn库来构建网络 neural network
用autograd来构建计算图和计算gradients
'''
import torch
import torch.nn as nnN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)# 把所有的module写在__init__里面,把每一个有导数的层放在init里面,在init里面定义模型的框架
class TwoLayerNet(torch.nn.Module):def __init__(self, D_in, H, D_out):super(TwoLayerNet, self).__init__()self.linear1 = torch.nn.Linear(D_in, H, bias=False)self.linear2 = torch.nn.Linear(H, D_out, bias=False)def forward(self, x):  # 前向传播的过程y_pred = self.linear2(self.linear1(x).clamp(min=0))return y_predmodel = TwoLayerNet(D_in, H, D_out)loss_fn = nn.MSELoss(reduction='sum')
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Adam 的学习率一般在1e-3到1e-4
# 若用SGD,则需要把初始值做一下nomalization,不知道为什么,但是loss会变得很小,玄学for t in range(500):  # forward passy_pred = model(x)  # model.forward()# compute lossloss = loss_fn(y_pred, y)  # computation graphprint(t, loss.item())optimizer.zero_grad()  # 将梯度清零避免叠加# backward pass, compute the gradientloss.backward()# update model parametersoptimizer.step()  # optimizer会更新

这篇关于Pytorch入门——基础知识及实现两层网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/640814

相关文章

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换