Pytorch入门——基础知识及实现两层网络

2024-01-24 19:48

本文主要是介绍Pytorch入门——基础知识及实现两层网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pytorch基础知识

内容来源:
B站视频——最好的PyTorch的入门与实战教程(16小时实战)

import torch
import numpy as nptorch.empty(5,3)  # 创建未初始化的矩阵x1 = torch.rand(5,3)  # 随机初始化矩阵x2 = torch.zeros(5,3)  # 全部为0矩阵x3 = torch.zeros(5,3, dtype=torch.long)  # 数据类型变为long
# x3 = torch.zeros(5,3).long() 效果一样x4 = torch.tensor([5.5, 3])  # 从数据直接构建tensorx5 = x4.new_ones(5,3)  # 根据已有tensor构建一个tensor,这些方法会重用原来tensor的特征。例如数据类型x6 = x4.new_ones(5,3, dtype=torch.double)torch.rand_like(x5, dtype=torch.float)# 得到tensor的形状
x5.shape
x5.size# 运算
y1 = torch.rand(5,3)
print(y1)
# add
x1 + y1
torch.add(x1, y1)result = torch.empty(5,3)
torch.add(x1, y1, out=result)
print(result)  # 把输出作为一个变量# In-place operation
y1.add_(x1)  # 把操作保存在y1里面
print(y1)
# 任何in-place运算都会以_结尾。  x.copy_(y)   x.t_()会改变x# 各种Numpy的indexing都可以在Pytorch tensor上使用
print(y1[:, 1:])  # 把所有行留下,把第一列之后的留下,相当于第零列舍去
print(y1[1:, 1:])  # 舍弃第零行,第零列# 如果希望resize一个tensor,可以使用torch.view
x7 = torch.randn(4,4)
y2 = x7.view(16)  # 变成16维
y3 = x7.view(2,8)  # 2x8 matrix
y3 = x7.view(2,-1)  # 会自动算出对应的为数,16/2 = 8, 但不能写两个-1
# 要能被16整除,因此出现(-1, 5)会报错# 若只有一个元素的tensor,使用.item()可以把里面的value变成python数值
x8 = torch.randn(1)
print(x8.data)  # 仍返回一个tensor
print(x8.grad)  # 返回一个grad
print(x8.item())  # 返回一个数字
print(y3.transpose(1, 0))  # 将y3进行转置# 在Numpy和Tensor之间转换
# Torch Tensor 和 Numpy Array 共享内存,改变其中一项另一项也改变
a = torch.ones(5)
b = a.numpy()
b[1] = 2
print(a)# 把Numpy ndarry转成Torch Tensor
c = np.ones(5)
d = torch.from_numpy(c)
np.add(c, 1, out = c)
print(c)
print(d)# CUDA Tensors
if torch.cuda.is_available():device = torch.device("cuda")          # a CUDA device objecty = torch.ones_like(x7, device=device)  # directly create a tensor on GPUx7 = x7.to(device)                       # or just use strings ``.to("cuda")``z = x7 + yprint(z)print(z.to("cpu", torch.double))       # ``.to`` can also change dtype together!# numpy是在CPU上操作的
# y.to("cpu").data.numpy()
# y.cpu().data.numpy()

使用Numpy实现两层模型

'''
用numpy实现两层神经网络,一个隐藏层,没有bias,用来从x预测y,使用L2 loss
h = W_1X + b_1
a = max(0,h)
y_hat = w_2a + b_2numpy ndarray 是一个普通的n维array
'''
import numpy as npN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)learning_rate = 1e-6
for t in range(500):  # forward passh = x.dot(w1)    # N*H  点积h_relu = np.maximum(h, 0)  # N*Hy_pred = h_relu.dot(w2)  # N*D_out# compute lossloss = np.square(y_pred - y).sum()print(t, loss)# backward pass, compute the gradientgrad_y_pred = 2.0*(y_pred - y)grad_w2 = h_relu.T.dot(grad_y_pred)grad_h_relu = grad_y_pred.dot(w2.T)grad_h = grad_h_relu.copy()grad_h[h<0] = 0grad_w1 = x.T.dot(grad_h)# update weights of w1 and w2w1 -= learning_rate*grad_w1w2 -= learning_rate*grad_w2

使用pytorch实现两层模型

手动实现反向传播及更新

import torchN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)w1 = torch.randn(D_in, H)
w2 = torch.randn(H, D_out)learning_rate = 1e-6
for t in range(500):  # forward passh = x.mm(w1)    # N*H  matrix multipulication点积h_relu = h.clamp(min=0)  # N*H  类似于夹子,把值夹在min和max之间y_pred = h_relu.mm(w2)  # N*D_out# compute lossloss = (y_pred - y).pow(2).sum().item()  # 要转成数字print(t, loss)# backward pass, compute the gradientgrad_y_pred = 2.0*(y_pred - y)grad_w2 = h_relu.t().mm(grad_y_pred)grad_h_relu = grad_y_pred.mm(w2.T)grad_h = grad_h_relu.clone()grad_h[h<0] = 0grad_w1 = x.t().mm(grad_h)# update weights of w1 and w2w1 -= learning_rate*grad_w1w2 -= learning_rate*grad_w2

自动实现反向传播

import torchN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)learning_rate = 1e-6
for t in range(500):  # forward pass# h = x.mm(w1)    # N*H  matrix multipulication点积# h_relu = h.clamp(min=0)  # N*H  类似于夹子,把值夹在min和max之间y_pred = x.mm(w1).clamp(min=0).mm(w2)  # N*D_out# compute lossloss = (y_pred - y).pow(2).sum()  #computation graphprint(t, loss.item())# backward pass, compute the gradientloss.backward()# update weights of w1 and w2# 为了不让计算图占内存,不会记住w1和w2的值with torch.no_grad():w1 -= learning_rate*w1.gradw2 -= learning_rate*w2.gradw1.grad.zero_()  # 避免多次计算累加导致错误w2.grad.zero_()

使用pytorch的nn库实现两层网络

'''
用nn库来构建网络 neural network
用autograd来构建计算图和计算gradients
'''
import torch
import torch.nn as nnN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)model = torch.nn.Sequential(torch.nn.Linear(D_in, H),  # w_1*x + b_1torch.nn.ReLU(),torch.nn.Linear(H, D_out)
)# 把初始化变成normal distribution会让模型效果好很多
torch.nn.init.normal_(model[0].weight)
torch.nn.init.normal_(model[2].weight)# model = model.cuda()loss_fn = nn.MSELoss(reduction='sum')learning_rate = 1e-6
for t in range(500):  # forward passy_pred = model(x)  # model.forward()# compute lossloss = loss_fn(y_pred, y)  # computation graphprint(t, loss.item())model.zero_grad()  # 将梯度清零避免叠加# backward pass, compute the gradientloss.backward()# update weights of w1 and w2with torch.no_grad():for param in model.parameters():param -= learning_rate*param.grad

使用optim进行自动优化

'''
用nn库来构建网络 neural network
用autograd来构建计算图和计算gradients
'''
import torch
import torch.nn as nnN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)model = torch.nn.Sequential(torch.nn.Linear(D_in, H),  # w_1*x + b_1torch.nn.ReLU(),torch.nn.Linear(H, D_out)
)# model = model.cuda()loss_fn = nn.MSELoss(reduction='sum')
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Adam 的学习率一般在1e-3到1e-4
# 若用SGD,则需要把初始值做一下nomalization,不知道为什么,但是loss会变得很小,玄学for t in range(500):  # forward passy_pred = model(x)  # model.forward()# compute lossloss = loss_fn(y_pred, y)  # computation graphprint(t, loss.item())optimizer.zero_grad()  # 将梯度清零避免叠加# backward pass, compute the gradientloss.backward()# update model parametersoptimizer.step()  # optimizer会更新

使用自定义神经网络

'''
用nn库来构建网络 neural network
用autograd来构建计算图和计算gradients
'''
import torch
import torch.nn as nnN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)# 把所有的module写在__init__里面,把每一个有导数的层放在init里面,在init里面定义模型的框架
class TwoLayerNet(torch.nn.Module):def __init__(self, D_in, H, D_out):super(TwoLayerNet, self).__init__()self.linear1 = torch.nn.Linear(D_in, H, bias=False)self.linear2 = torch.nn.Linear(H, D_out, bias=False)def forward(self, x):  # 前向传播的过程y_pred = self.linear2(self.linear1(x).clamp(min=0))return y_predmodel = TwoLayerNet(D_in, H, D_out)loss_fn = nn.MSELoss(reduction='sum')
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Adam 的学习率一般在1e-3到1e-4
# 若用SGD,则需要把初始值做一下nomalization,不知道为什么,但是loss会变得很小,玄学for t in range(500):  # forward passy_pred = model(x)  # model.forward()# compute lossloss = loss_fn(y_pred, y)  # computation graphprint(t, loss.item())optimizer.zero_grad()  # 将梯度清零避免叠加# backward pass, compute the gradientloss.backward()# update model parametersoptimizer.step()  # optimizer会更新

这篇关于Pytorch入门——基础知识及实现两层网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/640814

相关文章

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的