组合数的素数算法(ACM基础教程1010)

2024-01-24 04:32

本文主要是介绍组合数的素数算法(ACM基础教程1010),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述:

  
组合数TimeLimit: 1Second MemoryLimit: 32Megabyte Totalsubmit: 58Accepted: 4Description 从A+B个不同的物品中选择A个物品,共有多少种不同的选法。由于A,B会很大,所以结果对C取下余。 Input 首先输入T,代表共有T组测试数据。 每组数据包括三个数字,A,B,C; Output 输出只有一个数,如题目描述。 Sample Input21110022100Sample Output26

开始我以为一个简单的递归就可可以过,也就是C(n,m)=C(n-1,m)+C(n-1,m-1)组合数公式,但却tle;因为题目已经说明AB会很大,那么递归与暴力枚举是不可能AC的,那么该怎么做呢?:利用素数求法:

知识点:

这用到的是哥德巴赫猜想:热河一个数都可以有几个素数表示
1.任何一个实数都可以写成几个素数的和(1+1=2)
2.热河一个实数都可以写成几个素数的积(3!=3x2,6!=2^4*3^2*5^1)底数都是素数
3.a*b%c=(a%c)*(b%c)

这样我们就可以将C(n,m)分解为素数相乘的模式,如:C(6,3)=(2^4*3^2*5^1)/((3x2)*(3x2));

这时我们将素数的指数打表得

14    2     1
21    1     0
31    1     0

第一行减去的其余两行的 2   0   1那么结果就是2^2*3^0*5^1=20;

具体解题流程:

1.将素数打表,这方法有很多,可以用筛选法打表,也可以用其他打表方式

2.将N!分解为素数相乘的形式,然后将分解得到的指数写入数组表中,这提供一种方法代码:

1void factor ( int n, int * r )
2{
3        int i, j;
4        memset ( r, 0x00, PLEN * sizeof int ) );//数组初试化,注意含string.h
5        for ( i = 0; i < PLEN; ++i )
6        {
7            for ( j = n; j; r[i] += ( j /= p[i] ) );//数组p[i]为素数表,预先将素数打表完毕。(就是将0~n之间的素数按从小到大写入数组中,n=100000)
8        }
9}

然后将指数表相减求模;

如:C(A+B,A)=(A+B)!/(A!*B!)的到得指数表为AB[],A[],B[];

  AB[i]-=(A[i]+B[i]);

最后将AB[]表与素数表运算的结果(注意A*B%C=(A%C)*(B%C));

AC Code:(不理解,不会AC)

  
1 #include <stdio.h>2 #include <string.h>3 #include <math.h>4 5 #defineLEN 1000006 #definePLEN 95927 8 voidsieve ( char*f, intl ) {9 inti, j, ilim;10 11 memset ( f, 0x01, l );12 f[0] =f[1] =0;13 ilim =( int) sqrt ( ( double) l );14 15 for( i =2; i <=ilim; ++i ) {16 if( !f[i] ) continue;17 for( j =i *i; j <l; j +=i ) f[j] =0;18 }19 }20 21 charf[LEN];22 intp[PLEN];23 intu[PLEN], da[PLEN], db[PLEN];24 25 voidfactor ( intn, int*r ) 26 {27 inti, j;28 memset ( r, 0x00, PLEN *sizeof( int) );29 for( i =0; i <PLEN; ++i ) 30 {31 for( j =n; j; r[i] +=( j /=p[i] ) );32 }33 }34 35 intmain ( ) {36 inti, j, k;37 intT, A, B, C;38 39 sieve ( f, LEN );40 for( i =2, j =0; i <LEN; ++i ) if( f[i] ) p[j++] =i;//p[i]初始化41 for(inti=0;i<20;i++)printf("%d ",p[i]);42 for( scanf ( "%d", &T ); T--; ) {43 scanf ( "%d%d%d", &A, &B, &C );44 factor ( A , u );46 factor ( A, da );47 factor ( B, db );48 for( i =0, j =1; i <PLEN; ++i ) {49 k =u[i] -da[i] -db[i];50 while( k--) j =j *p[i] %C;51 }52 printf ( "%d /n", j );53 }54 55 return0;56 }

这篇关于组合数的素数算法(ACM基础教程1010)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/638548

相关文章

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1