​​快速排序(四)——挖坑法,前后指针法与非递归

2024-01-23 22:12

本文主要是介绍​​快速排序(四)——挖坑法,前后指针法与非递归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

fe594ea5bf754ddbb223a54d8fb1e7bc.gif

目录

​一.前言

二.挖坑法

三.前后指针法

四.递归优化

五.非递归

六.结语


 

8fb442646f144d8daecdd2b61ec78ecd.png一.前言

本文我们接着上篇文章的重点快排,现在继续讲解对快排优化的挖坑法,前后指针法以及非递归方法,下面是上篇文章快排链接:https://mp.csdn.net/mp_blog/creation/editor/135719674。

码字不易,希望大家多多支持我呀!(三连+关注,你是我滴神!)

二.挖坑法

其实挖坑法很简单,因为它只是在hoare的基础上优化了一部分,就比如不用去纠结为什么key在右边时,右边先走。这里因为坑设定在第一位,所以自然要从右边找数去填坑。

因此这里面的循环逻辑就变得很简单,右找小(填左边坑),自己变成新坑,左找大(填右边坑),自己变新坑,就这样以此类推最后一定会相遇,而这个相遇的位置一般就是我们的居中值(三数取中法),最后把key放入即可。

int PartSort2(int* a, int left, int right)
{int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);//通过三数取中把位于最左边的居中数给keyint key = a[left];//保存key值后,左边形成第一个坑位int hotel = left;//left与right不断相遇while (left < right){//右边先走,找小;找到后把值放到左边坑位中,右边形成新的坑位while (left < right && a[right] >= key){right--;}a[hotel] = a[right];hotel = right;//左边开始走,找大;找到后把值放到右边坑位中,左边形成新的坑位while (left < right && a[left] <= key){left++;}a[hotel] = a[left];hotel = left;}//最后二者相遇,并且其中一个必定是坑位//将key放入坑位中a[hotel] = key;return hotel;}

挖坑法由于有了前面hoare的铺垫,所以我们可以更简洁明了地写出代码,也更通俗易懂,但这些前提都是要理解hoare的核心,这样才能写出优化的挖坑法。

三.前后指针法

前后指针法写起来甚至比挖坑法更简单,因为它就只有一个核心点:

cur找比key小的数,prev++,交换prev与cur的值

而prev只有两者情况:

  1. 在cur没遇到比key大的值的时候,prev紧紧跟着cur(重合)
  2. 在cur遇到比key大的值的时候,prev在比key大的一组值的前面

这样就会出现一种情况,比key大的值会阻扰prev的前进,但只要cur再次找到比key小的值两者就会交换,prev就像是不断地推着比key大的值往后排。

3与7交换 

9与4交换

就这样持续到cur走出数组,这时可以看到prev的指向数是比key小的,最后prev与key进行交换。

写代码我们要注意一个地方,就是记得要在cur找小的时候添加一个条件如果该趟找不到小的已经越界了就及时退出,否则prev就会继续++,打乱了key的正确位置。

int PartSort3(int* a, int left, int right)
{int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);int key = left;int prev = left;int cur = prev + 1;while (cur <= right){//找小while (cur<=right&&a[cur] >= a[key]){cur++;}//当找不到小时if (cur > right){break;}else{prev++;Swap(&a[prev], &a[cur]);}}Swap(&a[key], &a[prev]);return key;}

还有一种写法,我们可以观察到cur无论是找小还是找不到小都会++,那不妨可以这样写:

int PartSort3(int* a, int left, int right)
{int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);int key = left;int prev = left;int cur = prev + 1;while (cur <= right){if (a[cur] < a[key]){prev++;Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[key], &a[prev]);return key;}

注意!这两个优化的方法并不能提高快排的算法效率,只是思想上的优化,便于我们更好理解而已。

四.递归优化

我们再来处理优化递归的问题:

满二叉树最后一层节点会占总节点的50%,因为一共有2^h-1个节点,最后一层有2^(h-1)个

对比到快排的递归而言,为了让这10个数有序而走了那么多次递归有点不划算。

那如果10个数我们不用递归而采用直接插入法的话可以效率可以提高80%-90%,因为递归最后三层的消耗占据很多,在处理数量级小的情况下会很浪费。

代码部分: 

void QuickSort(int* a, int begin, int end)
{if (begin >= end){return;}if ((end - begin + 1) > 10){int key = PartSort3(a, begin, end);QuickSort(a, begin, key - 1);QuickSort(a, key+1, end);}else{InsertSort(a + begin, end - begin + 1);}
}

 

这是最精妙的一步(小区间优化,小区间不再递归分割排序,降低递归次数),由于我们在不断递归的过程中那些后面被分割的许多个小组序列会占据大多数空间,所以我们统一划定一个标准,只要是小于10个的范围都直接插入法去解决,又因为我们划分的无数个子树都对应原数组不同的位置,那我们就分别用[begin,end]来规定它们,当我们用到直接插入排序时,只要在原数组地址加上begin就可以对应到自己的位置。

五.非递归

非递归的关键就是能够控制与保存区间——借助栈

我们先把数组的范围录入栈中

找到key的下标后把0-9取出录入我们的右区间6-9 

再把左区间0-4录入

之所以先入右再入左是因为这样可以先把左区间给取出来(栈的特点),然后下一次循环栈不为空则取出左区间走,0-4走完单趟选出key后继续分割

0-4分割成0-1与3-4,我们再把它们分别录入栈中。 

再把0-1取出来选出key为1后分割成0-0与2-1(2-1说明这里已经没有数了,也可以参考范围[key+1,end],)而这两个区间也不用继续入栈了(没啥好分的了)。

 我们可以发现这就是递归的过程,只不过我们需要用栈以非递归的形式实现

接着我们取出3-4进行分割,然后按照区间规则它分出的两区间不用再入栈了。

就这样以此类推直到栈为空结束。

void QuickSortNonR(int* a, int begin, int end)
{ST st;STInit(&st);//入栈,先入右,如9STPush(&st, end);//再入左,如0STPush(&st, begin);while (!STEmpty(&st)){//准备出栈,获取栈顶元素,如0int left = STTop(&st);//出栈,如0STPop(&st);//准备出栈,获取栈顶元素,如9int right = STTop(&st);//出栈,如9STPop(&st);//通过获取的元素构成范围来寻找key,【0-9】int key = PartSort3(a, left, right);//[left,key-1]key[key+1,right]//对范围如【0-9】进行分割,先入栈右区间再入栈左区间//准备入6-9//判断区间合理性,等于或大于不能放if (key + 1 < right){STPush(&st, right);//如入9STPush(&st, key+1);//如入6}//6-9已经录入//同理把0-5录入if (left < key - 1){STPush(&st, key-1);//如入5STPush(&st, left);//如入0}//现在第一层结束后栈顶由上到下就是0 5  6 9//至此由第一层分割的范围录入结束,后面就是判断栈里是否为空(还有没有范围)//如果栈不为空则继续执行这个循环,直到为空的时候,非递归也就完成了。}
}

 栈相关代码:对于栈功能还不熟悉的友友也可以移步我的这篇文章学习一下:https://mp.csdn.net/mp_blog/creation/editor/133249808

#include "Stack.h"void STInit(ST* ps)
{assert(ps);ps->a = NULL;ps->capacity = 0;ps->top = 0;
}void STDestroy(ST* ps)
{assert(ps);free(ps->a);ps->a = NULL;ps->top = ps->capacity = 0;
}void STPush(ST* ps, STDataType x)
{assert(ps);// 11:40if (ps->top == ps->capacity){int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newCapacity);if (tmp == NULL){perror("realloc fail");exit(-1);}ps->a = tmp;ps->capacity = newCapacity;}ps->a[ps->top] = x;ps->top++;
}void STPop(ST* ps)
{assert(ps);// assert(ps->top > 0);--ps->top;
}STDataType STTop(ST* ps)
{assert(ps);// assert(ps->top > 0);return ps->a[ps->top - 1];
}int STSize(ST* ps)
{assert(ps);return ps->top;
}bool STEmpty(ST* ps)
{assert(ps);return ps->top == 0;
}

4b12323f94834afd9ec146a3c10df229.jpeg六.结语

本文整体上是对快排进行的优化,让它的性能更加强大,另外也帮助我们在掌握好递归的同时也能运用好非递归。最后感谢大家的观看,友友们能够学习到新的知识是额滴荣幸,期待我们下次相见~

这篇关于​​快速排序(四)——挖坑法,前后指针法与非递归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637685

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)

《MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)》本文给大家介绍MyBatis的xml中字符串类型判空与非字符串类型判空处理方式,本文给大家介绍的非常详细,对大家的学习或... 目录完整 Hutool 写法版本对比优化为什么status变成Long?为什么 price 没事?怎

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam