单源点最短路径问题(Dijkstra算法)

2024-01-22 09:48

本文主要是介绍单源点最短路径问题(Dijkstra算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如图所示。设v0是起始点,求v0到其它各结点的最短路径。


设visited是已经生成了最短路径的结点集合(包括v0),对于当前不在visited中的结点w,记DIST(w)是从v0开始,只经过visited中的结点而在w结束的那条最短路径的长度;

(1) 如果下一条最短路径是到结点u,则这条路径是从结点v0出发在u处终止,且只经过那些在visited中的结点,即由v0至u的这条最短路径上的所有中间结点都是visited中的结点:设w是这条路径上的任意中间结点,则从v0到u的路径也包含了一条从v0到w的路径,且其长度小于从v0到u的路径长度,如下图:


(2) 所生成的下一条路径的终点u必定是所有不在visited内的结点中且具有最小距离DIST(u)的结点。
(3) 如果选出了这样结点u并生成了从v0到u的最短路径之后,结点u将成为visited中的一个成员。此时,那些从v0出发,只经过visited中的结点并且在visited外的结点w处结束的最短路径可能会减少——DIST(w)的值变小:如果这样的路径的长度发生了改变,则这些路径必定是一条从v0开始,经过u然后到w的更短的路所致,概念如下图:


因此整个算法的流程为:

假设存在Graph=<V,E>,源顶点为V0,visited={V0},dist[vi]记录V0到vi的最短距离,path[vi]记录从V0到vi最短路径上,vi之前的一个顶点。

1.从(V-visited)中,即未加入的u的集合中选择使dist[vi]值最小的顶点vi,将vi加入到visited中;

2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[u]+Graph[u][j]})

3.直到说visited=V,停止。


#include <fstream>
#include <iostream>
#include <limits.h>
#include <stack>
using namespace std;
#define max INT_MAX;	
int **Graph;//n个顶点的有向图,包含e条边
int n;
int e;
//读入数据
void input();//g为有向图
//dist为v0到各点最短路径长度
//path为记录的从v0到某点的最短路径
void Dijkstra(int **g, int nsize, int *dist, int *path, int v0);//从v0到vi的路径
void showPath(int* path, int* dist, int v0, int vi);int main()
{input();/*for (int i = 0; i < n; i++){for (int j = 0; j < n; j++)cout << Graph[i][j] << "  ";cout << endl;}*/int *dist = new int[n];	//距离数组int *path = new int[n]; //路径数组int v0;cin >> v0;Dijkstra(Graph, n, dist, path, v0-1); //从1开始计数就减1,否则去掉cout << "start	" << "end	" << "length	" << "nodes list	" << endl;for (int i = 0; i < n; i++){if (i != v0){showPath(path, dist, v0-1, i);}}delete dist;delete path;delete Graph;return 0;
}void input()
{fstream cin("a.txt");int start, end, weight;//代表一条s->t权重为weight的边cin >> n >> e;Graph = new int*[n];//初始化有向图for (int i = 0; i < n; i++){Graph[i] = new int[n];for (int j = 0; j < n; j++){if (j == i)Graph[i][j] = 0;//对角线置0elseGraph[i][j] = 0;}}//读入数据for (int i = 0; i < e; i++){cin >> start >> end >> weight;Graph[start - 1][end - 1] = weight; //减1:图中节点从1开始}
}void Dijkstra(int **g, int nsize, int *dist, int *path, int v0)
{bool *visited = new bool[nsize]; //记录已经访问过的点(依次加入的到v0距离最近) for (int i = 0; i < nsize; i++)//初始化{if (i != v0 && g[v0][i] > 0){dist[i] = g[v0][i]; //用初值更新distpath[i] = v0; //path中存储连接到从v0到i的上一个节点(i前面一个)}else //不与v0相邻的,设置权重为无穷大{dist[i] = max;path[i] = -1; //没有连接}visited[i] = false; //将所有节点置为未访问过dist[v0] = 0;path[v0] = v0;}visited[v0] = true; //将v0加入到集合中for (int i = 1; i < nsize; i++) //将剩余节点(从1到n-1)依次加入到集合visited中{int minCost = max;int u; //即将加入集合visited的点for (int k = 0; k < nsize; k++) //找到集合外距离v0最近的点{if (visited[k] == false && dist[k] < minCost){minCost = dist[k];u = k;}}visited[u] = true;for (int j = 0; j < nsize; j++) //每加入一个点就更新dist{//比较从dist[v0-->j]与dist[v0-->若干点-->u-->j]if (visited[j] == false && Graph[u][j] > 0 && dist[j] > minCost + Graph[u][j]){dist[j] = minCost + Graph[u][j];path[j] = u; //j进过w到v0,比j直接到v0原路径近}}}
}void showPath(int* path, int* dist,int v0, int vi)
{stack<int> s;cout << 'v' << v0 << '	'; //startcout << 'v' << vi << '	'; //endwhile (vi != v0){s.push(vi);vi = path[vi]; //vi位置存储的是v0到vi的上个节点的位置}s.push(vi);cout << dist[vi] << '	'; //distancewhile (!s.empty()){cout << 'v' << s.top() << ' ';s.pop();}cout << endl;
}

测试数据为:

7 12
1 2 20
1 3 50
1 4 30
2 3 25
2 6 70
3 5 25
3 6 50
4 3 40
4 5 55
5 6 10
5 7 70
6 7 50


测试结果为:



这篇关于单源点最短路径问题(Dijkstra算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/632608

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模