《Python数据分析技术栈》第03章 03 可视化各级数据(Visualizing various levels of data)

本文主要是介绍《Python数据分析技术栈》第03章 03 可视化各级数据(Visualizing various levels of data),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

03 可视化各级数据(Visualizing various levels of data)

《Python数据分析技术栈》第03章 03 可视化各级数据(Visualizing various levels of data)

Whenever you need to analyze data, first understand if the data is structured or unstructured. If the data is unstructured, convert it to a structured form with rows and columns, which makes it easier for further analysis using libraries like Pandas. Once you have data in this format, categorize each of the features or columns into the four levels of data and perform your analysis accordingly.

无论何时需要分析数据,首先要了解数据是结构化的还是非结构化的。如果是非结构化数据,则应将其转换为具有行和列的结构化形式,这样更便于使用 Pandas 等库进行进一步分析。有了这种格式的数据后,将每个特征或列归类到数据的四个层次,然后进行相应的分析。

Note that in this chapter, we only aim to understand how to categorize the variables in a dataset and identify the operations and plots that would apply for each category. The actual code that needs to be written to visualize the data is explained in Chapter 7.

请注意,在本章中,我们只想了解如何对数据集中的变量进行分类,并确定适用于每个类别的操作和绘图。为实现数据可视化而需要编写的实际代码将在第 7 章中讲解。

We look at how to classify the features and perform various operations using the famous Titanic dataset. The dataset can be imported from here: https://github.com/DataRepo2019/Data-files/blob/master/titanic.csv

我们将使用著名的泰坦尼克号数据集来研究如何对特征进行分类并执行各种操作。数据集可从此处导入: https://github.com/DataRepo2019/Data-files/blob/master/titanic.csv

Background information about the dataset: The RMS Titanic, a British passenger ship, sank on its maiden voyage from Southampton to New York on 15th April 1912, after it collided with an iceberg. Out of the 2,224 passengers, 1,500 died, making this event a tragedy of epic proportions. This dataset describes the survival status of the passengers and other details about them, including their class, name, age, and the number of relatives.

数据集背景信息: 1912 年 4 月 15 日,英国皇家泰坦尼克号客轮在从南安普顿到纽约的处女航中与冰山相撞沉没。在 2224 名乘客中,有 1500 人丧生,使这一事件成为史诗般的悲剧。该数据集描述了乘客的生还状况及其他详细信息,包括他们的等级、姓名、年龄和亲属人数。

在这里插入图片描述

The features in this dataset, classified according to the data level, are captured in Table 4-1.

表 4-1 根据数据级别对数据集中的特征进行了分类。

在这里插入图片描述

Let us now understand the rationale behind the classification of the features in this dataset.

现在,让我们来了解一下对该数据集中的特征进行分类的原理。

Nominal variables: Variables like “PassengerId”, “Survived”, “Name”, “Sex”, “Cabin”, and “Embarked” do not have any intrinsic ordering of their values. Note that some of these variables have numeric values, but these values are finite in number. We cannot perform an arithmetic operation on these values like addition, subtraction, multiplication, or division. One operation that is common with nominal variables is counting. A commonly used method in Pandas, value_counts (discussed in the next chapter), is used to determine the number of values per each unique category of the nominal variable. We can also find the mode (the most frequently occurring value). The bar graph is frequently used to visualize nominal data (pie charts can also be used), as shown in Figure 4-5.

名义变量: PassengerId"、“Survived”、“Name”、“Sex”、"Cabin "和 "Embarked "等变量的值没有内在顺序。需要注意的是,其中一些变量有数值,但这些数值的数量是有限的。我们无法对这些数值进行加、减、乘或除等算术运算。对名义变量常用的一种操作是计数。Pandas 中的一个常用方法 value_counts(将在下一章中讨论)用于确定标称变量中每个独特类别的值的数量。我们还可以找到模式(出现频率最高的值)。如图 4-5 所示,条形图常用于将名义数据可视化(也可以使用饼图)。

Ordinal variables: “Pclass” (or Passenger Class) is an ordinal variable since its values follow an order. A value of 1 is equivalent to first class, 2 is equivalent to the second class, and so on. These class values are indicative of socioeconomic status.

顺序变量: “Pclass”(或乘客等级)是一个顺序变量,因为它的值是有顺序的。数值 1 代表一等舱,2 代表二等舱,以此类推。这些等级值表明了社会经济地位。

We can find out the median value and percentiles. We can also count the number of values in each category, calculate the mode, and use plots like bar graphs and pie charts, just as we did for nominal variables.

我们可以找出中位值和百分位数。我们还可以计算每个类别中的数值个数、计算模式,并使用条形图和饼图等图表,就像我们对名义变量所做的那样。

In Figure 4-6, we have used a pie chart for the ordinal variable “Pclass”

在图 4-6 中,我们使用饼图来表示序数变量 “Pclass”。

Ratio Data: The “Age” and “Fare” variables are examples of ratio data, with the value zero as a reference point. With this type of data, we can perform a wide range of mathematical operations. For example, we can add all the fares and divide it by the total number of passengers to find the mean. We can also find out the standard deviation. A histogram, as shown in Figure 4-7, can be used to visualize this kind of continuous data to understand the distribution.

比率数据: 年龄 "和 "票价 "变量是比率数据的例子,以零值为参考点。利用这类数据,我们可以进行多种数学运算。例如,我们可以将所有票价相加,然后除以乘客总数,得出平均值。我们还可以求出标准差。直方图(如图 4-7 所示)可用于直观显示这类连续数据,以了解其分布情况。

In the preceding plots, we looked at the graphs for plotting individual categorical or continuous variables. In the following section, we understand which graphs to use when we have more than one variable or a combination of variables belong to different scales or levels.

在前面的绘图中,我们了解了用于绘制单个分类变量或连续变量的图形。在下一节中,我们将了解当有多个变量或变量组合属于不同尺度或级别时,应该使用哪种图形。

绘制混合数据(Plotting mixed data)

In this section, we’ll consider three scenarios, each of which has two variables that may or may not belong to the same level and discuss which plot to use for each scenario (using the same Titanic dataset).

在本节中,我们将考虑三种情况,每种情况都有两个变量,这两个变量可能属于也可能不 属于同一级别,并讨论每种情况下应使用哪种曲线图(使用相同的泰坦尼克数据集)。

One categorical and one continuous variable: A box plot shows the distribution, symmetry, and outliers for a continuous variable. A box plot can also show the continuous variable against a categorical variable. In Figure 4-8, the distribution of ‘Age’ (a ratio variable) for each value of the nominal variable – ‘Survived’ (0 is the value for passengers who did not survive and 1 is the value for those who did).

一个分类变量和一个连续变量: 方框图显示连续变量的分布、对称性和异常值。方框图还可以显示连续变量与分类变量的对比情况。在图 4-8 中,“年龄”(比率变量)在名义变量 “存活”(0 代表未存活乘客的值,1 代表存活乘客的值)的每个值上的分布情况。

Both continuous variables: Scatter plots are used to depict the relationship between two continuous variables. In Figure 4-9, we plot two ratio variables, ‘Age’ and ‘Fare’, on the x and y axes to produce a scatter plot.

都是连续变量: 散点图用于描述两个连续变量之间的关系。在图 4-9 中,我们将两个比率变量 "年龄 "和 "票价 "分别绘制在 x 轴和 y 轴上,从而得到散点图。

Both categorical variables: Using a clustered bar chart (Figure 4-10), you can combine two categorical variables with the bars depicted side by side to represent every combination of values for the two variables.

两个分类变量: 使用聚类条形图(图 4-10),可以将两个分类变量结合在一起,并列的条形图代表了这两个变量的所有数值组合。

We can also use a stacked bar chart to plot two categorical variables. Consider the following stacked bar chart, shown in Figure 4-11, plotting two categorical variables –“Pclass” and “Survived”

我们还可以使用堆叠条形图来绘制两个分类变量。下面是图 4-11 所示的堆叠条形图,其中绘制了两个分类变量–"Pclass "和 “Survived”。

In summary, you can use a scatter plot for two continuous variables, a stacked or clustered bar chart for two categorical variables, and a box plot when you want to display a continuous variable across different values of a categorical variable.

总之,您可以对两个连续变量使用散点图,对两个分类变量使用堆叠条形图或聚类条形图,当您想在分类变量的不同值之间显示连续变量时使用盒状图。

这篇关于《Python数据分析技术栈》第03章 03 可视化各级数据(Visualizing various levels of data)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/628823

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: