72.Spark大型电商项目-算子调优之使用repartition解决Spark SQL低并行度的性能问题

本文主要是介绍72.Spark大型电商项目-算子调优之使用repartition解决Spark SQL低并行度的性能问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

并行度

问题解析

解决方法

设置前

设置后


本篇文章记录算子调优之使用repartition解决Spark SQL低并行度的性能问题。

并行度

之前说过,并行度是自己可以调节,或者说是设置的。

1、spark.default.parallelism
2、textFile(),传入第二个参数,指定partition数量(比较少用)

在项目代码中,没有设置并行度,实际上,在生产环境中,是最好自己设置一下的。官网有推荐的设置方式,你的spark-submit脚本中,会指定你的application总共要启动多少个executor,100个;每个executor多少个cpu core,2~3个;总共application,有cpu core,200个。

官方推荐,根据你的application的总cpu core数量(在spark-submit中可以指定,200个),自己手动设置spark.default.parallelism参数,指定为cpu core总数的2~3倍。400~600个并行度。600。

问题解析

你设置的这个并行度,在哪些情况下会生效?哪些情况下,不会生效?
如果你压根儿没有使用Spark SQL(DataFrame),那么你整个spark application默认所有stage的并行度都是你设置的那个参数。(除非你使用coalesce算子缩减过partition数量)。

问题来了,用了Spark SQL,用Spark SQL的那个stage的并行度,没法自己指定。Spark SQL自己会默认根据hive表对应的hdfs文件的block,自动设置Spark SQL查询所在的那个stage的并行度。你自己通过spark.default.parallelism参数指定的并行度,只会在没有Spark SQL的stage中生效。

比如第一个stage,用了Spark SQL从hive表中查询出了一些数据,然后做了一些transformation操作,接着做了一个shuffle操作(groupByKey);下一个stage,在shuffle操作之后,做了一些transformation操作。hive表,对应了一个hdfs文件,有20个block;你自己设置了spark.default.parallelism参数为100。

针对以上例子,第一个stage的并行度,是不受你的控制的,就只有20个task;第二个stage,才会变成你自己设置的那个并行度,100。

问题在哪里?

Spark SQL默认情况下,它的那个并行度,咱们没法设置。可能导致的问题,也许没什么问题,也许很有问题。Spark SQL所在的那个stage中,后面的那些transformation操作,可能会有非常复杂的业务逻辑,甚至说复杂的算法。如果你的Spark SQL默认把task数量设置的很少,20个,然后每个task要处理为数不少的数据量,然后还要执行特别复杂的算法。

这个时候,就会导致第一个stage的速度,特别慢。第二个stage,1000个task,非常快。

解决方法

解决上述Spark SQL无法使用设置并行度和task数量的办法,是什么呢?

repartition算子,你用Spark SQL这一步的并行度和task数量,肯定是没有办法去改变了。但是,可以将你用Spark SQL查询出来的RDD,使用repartition算子,去重新进行分区,此时可以分区成多个partition,比如从20个partition,分区成100个。

然后呢,从repartition以后的RDD,再往后,并行度和task数量,就会按照你预期的来了。就可以避免跟Spark SQL绑定在一个stage中的算子,只能使用少量的task去处理大量数据以及复杂的算法逻辑。

String sql ="select * "+ "from user_visit_action "+ "where date>='" + startDate + "' "+ "and date<='" + endDate + "'";Dataset actionDF = sqlContext.sql(sql);/*** 这里就很有可能发生上面说的问题* 比如说,Spark SQl默认就给第一个stage设置了20个task,但是根据你的数据量以及算法的复杂度* 实际上,你需要1000个task去并行执行** 所以说,在这里,就可以对Spark SQL刚刚查询出来的RDD执行repartition重分区操作*/return  actionDF.javaRDD().repartition(100);


 

设置前

设置后

 

这篇关于72.Spark大型电商项目-算子调优之使用repartition解决Spark SQL低并行度的性能问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/624388

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

qt5cored.dll报错怎么解决? 电脑qt5cored.dll文件丢失修复技巧

《qt5cored.dll报错怎么解决?电脑qt5cored.dll文件丢失修复技巧》在进行软件安装或运行程序时,有时会遇到由于找不到qt5core.dll,无法继续执行代码,这个问题可能是由于该文... 遇到qt5cored.dll文件错误时,可能会导致基于 Qt 开发的应用程序无法正常运行或启动。这种错

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(