VRPSolverEasy:支持VRP问题快速建模的精确算法Python包

2024-01-18 03:28

本文主要是介绍VRPSolverEasy:支持VRP问题快速建模的精确算法Python包,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一步步安装免费版
  • 主要模块介绍
    • 1. depot point
    • 2. customer point
    • 3. links
    • 4. vehicle type
  • VRPTW 算例
    • 数据说明
    • 模型建立
    • 输出求解状态及结果


前言

VRPSolverEasy 是用于车辆路径问题(VRP)的最先进的分支切割和定价算法求解器1,它的一大特点是,即使没有运筹学背景的用户,也可以直观地通过Python接口定义出VRP问题,无需知道模型是如何建立为 MIP 问题以及底层进行的线性处理,只需要通过配置好的方法,向模型中添加高度抽象的VehicleTypePoint(衍生出depotcustomer)、links 即可。

VRPSolver将VRP问题进行了高度抽象,尽管较大程度方便使用,但代价是限制了VRPSolver只能建模常见的标准的VRP变体问题,例如:

  1. 车辆带容量限制;
  2. 客户点带时间窗;
  3. 车辆不同质;
  4. 多depot发车;
  5. 客户点指定车辆资质;
  6. 时间依赖…

VRPSolver的内核是分支切割定价算法,其高效性在于对可行解最优界(下界)的优化上,而在初始可行解的寻找方面效率较低,因此由外部启发式求解器获得非常好的初始解(上界)时,VRPSolver的求解性能可以得到改善。

目前的VRPSolver仍然是proof-of-concept的代码,容易出现问题,因此建议仅用于研究、教学、测试等非生产环境。

一步步安装免费版

VRPSolverEasy有两种安装模式,一种是免费版本,直接安装VRPSolverEasy库(内嵌了COIN-OR CLP线性规划求解器),以及下载Bapcod发行版即可。另一种是学术版本,该版本使用了商业CPLEX MIP求解器,由于CPLEX可以免费用于学术目的,因此这个版本下的VRPSolverEasy也被称为学术版,该版本提高了求解性能,并提供了内置的基于MIP的启发式算法,对寻找可行的初始解非常有用。

这里我们仅介绍安装免费版的 VRPSolverEasy,操作系统默认为Windows。(学术版的安装请参考 官方文档)

(1)确认python版本及更新pip

VRPSolverEasy库要求python版本不小于 3.6,因此在开始安装前,先确认好python的版本,并建议更新 pip 库:

python -m pip install --upgrade pip

(2)安装VRPSolverEasy库

VRPSolverEasy库的安装可以直接用pip安装:

python -m pip install VRPSolverEasy

(3)安装Bapcod依赖的环境

由于内嵌的 CLP 仅是线性规划求解器,要用 B&C&P 求解MIP问题,还需安装Bapcod,由于Bapcod的底层是C++,因此要用Python接口使用,就还需下载能对该库进行编译和管理的工具CMake,该工具的官网下载地址为:Download CMake,具体的安装细节可以参考:Windows 安装CMake。在cmd控制台输入 cmake --version 即可查看CMake的版本。

接着还需安装 Bapcod 依赖的python库:

  1. Boost库版本1.76 pip install boost
  2. LEMON 库版本 1.3.1 pip install lemon

(4)申请Bapcod并替换相应文件

尽管Bapcod是免费开源的库,但是需要学术机构的电子邮箱才能下载Bapcod的源码,在 BaPCod官方网站 填写相应信息并回车进行申请。系统会自动验证该邮箱,并向该邮箱发送下载链接。

解压下载的文件,例如为 bapcod-v0.82.5,找到该文件夹下的 VRPSolverEasy 文件夹,复制该文件夹下的 Windows 文件夹到 VRPSolverEasy 库下面的 lib 文件夹中替换 Windows 即可。

主要模块介绍

关于主要模块的介绍我们截取翻译自VRPSolverEasy的技术报告1

导入VRPSolverEasy库,并通过以下命令创建模型。

import VRPSolverEasy
model = VRPSolverEasy.Model()

VRPSolverEasy库模型由四组实体对象定义:depot pointscustomer pointslinksvehicle types

1. depot point

depot 可以通过如下命令添加

model.add_depot(id=<id>, name='', service_time=0.0, tw_begin=0.0, tw_end=0.0)

添加 depot 方法的参数说明如下:

Characterization of a depot point v

2. customer point

customer 可以通过如下命令添加:

model.add_customer(id=<id>, id_customer=<id>, name ='', demand=0, penalty=0.0, service_time=0.0, tw_begin=0.0, tw_end=0.0, incompatible_vehicles=[])

添加 customer 方法的参数说明如下:

Characterization of a customer point v
不论是 depot point 还是 customer point,都应该有一个唯一的点 id,且每个 customer 都与一个或多个点相关联,其中 idid_customer 可以不同。

对于一些特殊的问题,例如同一个客户点具有不同的时间窗,且每个时间窗所兼容的车辆可能不同,常见于时间依赖的VRPTW问题,这类问题中,客户点可能会被多辆车访问(同时或者有时间前后约束),这时候为了避免与子环路消除约束相冲突,往往会创建虚拟点,在这里,如果我们要创建 customer point 的额外点,可以通过以下命令添加:

model.add_point(id=<id>, id_customer=<id>, name ='', demand=0, penalty=0.0, service_time=0.0, tw_begin=0.0, tw_end=0.0, incompatible_vehicles=[])

3. links

link 可以通过如下命令添加:

model.add_link(start_point_id=<id>, end_point_id=<id>, name='', is_directed=False, distance=0.0, time=0.0, fixed_cost=0.0)

添加 link 方法的参数说明如下:

Characterization of a link l
每一条 link 代表有向图G当中的一条弧,如果 is_directed=True,则说明该弧具有方向,只能从 start_point_idend_point_id 方向;如果 is_directed=False,则说明该弧是双向的(若不设置该参数默认为双向的)。

4. vehicle type

vehicle type 可以通过如下命令添加:

model.add_vehicle_type(id=<id>, start_point_id=-1, end_point_id=-1, name='', capacity=0, fixed_cost=0.0, var_cost_dist=0.0, var_cost_time=0.0, max_number=1, tw_begin=0.0, tw_end=0.0) 

添加 vehicle type 方法的参数说明如下:

Characterization of a vehicle type k
当车辆的开始点和结束点都为 -1 时,说明该车辆可以在任意节点处出发,和返回任意节点处。

VRPTW 算例

数据说明

如下设置 7 个节点,以第 1 个节点 Wisconsin, USAdepot point,其余节点为 customer point,除了 depot 其余节点都有大于0需求量,车辆的时间窗为 [ 0 , 5000 ] [0, 5000] [0,5000],每辆车单位距离成本为 10,节点与节点之间的距离通过欧式距离公式计算 compute_euclidean_distance

import VRPSolverEasy as vrpse
import mathdef compute_euclidean_distance(x_i, x_j, y_i, y_j):"""compute the euclidean distance between 2 points from graph"""return round(math.sqrt((x_i - x_j)**2 + (y_i - y_j)**2), 3)# Data
cost_per_distance = 10
begin_time = 0
end_time = 5000
nb_point = 7# Map with names and coordinates
coordinates = {"Wisconsin, USA": (44.50, -89.50),  # depot"West Virginia, USA": (39.000000, -80.500000),"Vermont, USA": (44.000000, -72.699997),"Texas, the USA": (31.000000, -100.000000),"South Dakota, the US": (44.500000, -100.000000),"Rhode Island, the US": (41.742325, -71.742332),"Oregon, the US": (44.000000, -120.500000)}# Demands of points
demands = [0, 500, 300, 600, 658, 741, 436]

模型建立

依次建立求解车辆路径网络流问题的要素:车辆、节点、弧。要素的参数值可以自定义配置。

# Initialisation
model = vrpse.Model()# Add vehicle type
model.add_vehicle_type(id=1,start_point_id=0,end_point_id=0,name="VEH1",capacity=1100,max_number=6,var_cost_dist=cost_per_distance,tw_end=5000)# Add depot
model.add_depot(id=0, name="D1", tw_begin=0, tw_end=5000)coordinates_keys = list(coordinates.keys())
# Add customers
for i in range(1, nb_point):model.add_customer(id=i,name=coordinates_keys[i],demand=demands[i],tw_begin=begin_time,tw_end=end_time)# Add links
coordinates_values = list(coordinates.values())
for i in range(0, 7):for j in range(i + 1, 7):dist = compute_euclidean_distance(coordinates_values[i][0],coordinates_values[j][0],coordinates_values[i][1],coordinates_values[j][1])model.add_link(start_point_id=i,end_point_id=j,distance=dist,time=dist)

输出求解状态及结果

当建立模型后,通过以下命令即可实现求解,求解的结果都会保存在 model 的属性当中。

# solve model
model.solve()

打印模型信息可以通过以下命令,默认将模型信息保存在 instance.json 文件中。

model.export()

通过 model.status 可以返回模型的求解状态码:

状态码说明
0找到一个解并证明了最优性
1求解过程被时间限制打断,但找到了优于截断值的解
2求解器证明不存在由于截断值的解
3求解过程被时间限制打断,且没找到由于截断值的解

判断求解状态码是一种输出结果的前置判断,在该库中也可以用 model.solution.is_defined() 进行判断,后者表示找到了可行解,且解的信息会保存到模型的属性当中:

if model.solution.is_defined():# 打印解的目标值及方案的全部信息print(model.solution)# 仅打印路线方案print(model.solution.routes)# 仅打印目标值print(model.solution.value)    # 打印解的求解时间和上下界信息等print(model.statistics)

打印解的目标值及方案的全部信息如下:

Solution cost : 1479.6800000008684Route for vehicle 1:ID : 0 --> 2 --> 5 --> 0Name : D1 --> Vermont, USA --> Rhode Island, the US --> D1End time : 0.0 --> 16.807 --> 19.259 --> 37.230000000000004Load : 0.0 --> 300.0 --> 1041.0 --> 1041.0
Total cost : 372.29999999999995Route for vehicle 1:ID : 0 --> 1 --> 3 --> 0Name : D1 --> West Virginia, USA --> Texas, the USA --> D1End time : 0.0 --> 10.548 --> 31.625 --> 48.728Load : 0.0 --> 500.0 --> 1100.0 --> 1100.0
Total cost : 487.2800000000001Route for vehicle 1:ID : 0 --> 4 --> 6 --> 0Name : D1 --> South Dakota, the US --> Oregon, the US --> D1End time : 0.0 --> 10.5 --> 31.006 --> 62.010000000000005Load : 0.0 --> 658.0 --> 1094.0 --> 1094.0
Total cost : 620.1

  1. N. Errami, E. Queiroga, R. Sadykov, E. Uchoa. “VRPSolverEasy: a Python library for the exact solution of a rich vehicle routing problem”, Technical report HAL-04057985, 2023. ↩︎ ↩︎

这篇关于VRPSolverEasy:支持VRP问题快速建模的精确算法Python包的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/617974

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装