数字图像处理:全局阈值处理与Otsu算法

2024-01-16 09:12

本文主要是介绍数字图像处理:全局阈值处理与Otsu算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数字图像处理:全局阈值处理

基本的全局阈值处理

当目标和背景像素的灰度分布非常不同时,可对整个图像使用单个(全局)阈值。在大多数应用中,图像之间存在足够的变化时,使用全局阈值是一种合适的方法。也需要有能对每幅图像估计阈值的算法:

  1. 为全局阈值 T T T 选择一个初始估计值;
  2. 基于初始 T T T 分割图像,这将残生两组像素,由灰度值大于 T T T 的所有像素组成的 G 1 G_1 G1,由所有小于等于 T T T 的像素组成的 G 2 G_2 G2 ;
  3. G 1 G_1 G1 G 2 G_2 G2 中的像素分别计算平均灰度值 (均值) m 1 m_1 m1 m 2 m_2 m2 ;
  4. m 1 m_1 m1 m 2 m_2 m2之间计算一个新的阈值: T = m 1 + m 2 2 T = \frac{m_1+m_2}{2} T=2m1+m2;
  5. 重复步骤 2 和 步骤 4,直到连续迭代中两个 T T T 值之间的差值小于某个预定义的值 Δ T \Delta T ΔT 为止。

当与目标和背景相关的直方图模式之间存在一个非常清晰的波谷时,上述算法很有效。参数 Δ T \Delta T ΔT 用于在阈值变化不大时停止迭代。初始阈值必须大于图像中的最小灰度级、小于图像中的最大灰度级,选择图像的平均灰度作为初始值最好。满足这个条件时,无论模式是否可分,算法都会在有限数量的步骤内收敛。

使用Otus 方法的最优全局阈值处理

阈值处理可视为一种统计决策理论问题,其目的是在把像素分配给两组或多组(也称分类)的过程中,使引入的平均误差最小。对于这个问题,已知有一个解析解,称为贝叶斯决策函数。 这个解析解仅基于两个参数:每类灰度级的概率密度函数 (PDF )和已知应用中每类出现的概率。遗憾的是,估计PDF 并不容易,因此通常采用 一种假设的PDF 形式来简化这 一问题,如假设它们是高斯函数。即使采用了这一形式的简化,使用这些假设求解的过程也很复杂,并且对实时应用来说也并非总是合适的。

Otsu方法,也称为大津法,是一种用于图像处理中图像二值化的自适应阈值选择方法。该方法由日本学者大津秀一(Nobuyuki Otsu)于1979年提出。Otsu方法旨在找到一个阈值,将图像分为两个类别(前景和背景),使得类别内的方差最小,同时类别之间的方差最大。,Otsu方法还有一个重要的性质,即它完全基 于对图像的直方图。

  1. 直方图计算: 计算图像的直方图,即每个像素值的频率分布。

  2. 归一化直方图: 将直方图归一化,得到每个像素值的概率分布: P ( i ) = n i N i P(i) = \frac{n_i}{N_i} P(i)=Nini

  3. 计算类内方差: 对于每个可能的阈值,计算两个类别(前景和背景)内的方差之和。方差的计算方式为:

    类内方差= w 0 ⋅ σ 0 2 + w 1 ⋅ σ 1 2 w_0\cdot \sigma_0^2 +w_1\cdot \sigma_{1}^2 w0σ02+w1σ12

    其中:

    • w 0 w_0 w0 w 1 w_1 w1 是两个类别的权重(概率);
    • σ 0 2 \sigma_0^2 σ02 σ 1 2 \sigma_1^2 σ12 是两个类别的方差。
  4. 选择最优阈值: 找到使得类内方差最小的阈值,即:

    a r g m i n t ( w 0 ( t ) ⋅ σ 0 2 ( t ) + w 1 ( t ) ⋅ σ 1 2 ( t ) ) {\rm argmin_t}(w_0(t)\cdot \sigma_{0}^{2}(t)+w_1(t)\cdot \sigma_1^2(t)) argmint(w0(t)σ02(t)+w1(t)σ12(t))

    其中 t t t 是阈值。

  5. 应用阈值: 使用找到的最优阈值对图像进行二值化,将图像分为前景和背景。

这样,Otsu方法通过优化类别内方差,自适应地选择了一个合适的阈值,有效地将图像分割成两个类别。该方法在处理具有双峰直方图的图像时表现良好,例如在目标和背景具有清晰对比度的情况下。

在Python中,你可以使用一些图像处理库,如OpenCV或Scikit-Image,来实现Otsu方法。以下是一个使用OpenCV的简单示例:

这样,Otsu方法通过优化类别内方差,自适应地选择了一个合适的阈值,有效地将图像分割成两个类别。该方法在处理具有双峰直方图的图像时表现良好,例如在目标和背景具有清晰对比度的情况下。

在Python中,可以使用一些图像处理库,如OpenCV或Scikit-Image,来实现Otsu方法。以下是一个使用OpenCV的简单示例:

import cv2
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('example_image.jpg', cv2.IMREAD_GRAYSCALE)# 应用Otsu二值化
_, binary_image = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)# 显示原始图像和二值化结果
plt.subplot(1, 2, 1)
plt.imshow(image, cmap='gray')
plt.title('Original Image')plt.subplot(1, 2, 2)
plt.imshow(binary_image, cmap='gray')
plt.title('Otsu Thresholding')plt.show()

请注意,为了使用Otsu方法,使用了cv2.THRESH_BINARY + cv2.THRESH_OTSU标志。这将告诉OpenCV在threshold函数中使用Otsu方法来自适应地选择阈值。

这篇关于数字图像处理:全局阈值处理与Otsu算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/612051

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建