强化学习应用(七):基于Q-learning的物流配送路径规划研究(提供Python代码)

本文主要是介绍强化学习应用(七):基于Q-learning的物流配送路径规划研究(提供Python代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Q-learning算法简介

Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。

Q-learning算法的核心思想是使用一个Q值函数来估计每个状态动作对的价值。Q值表示在特定状态下采取某个动作所能获得的预期累积奖励。算法通过不断更新Q值函数来优化智能体的决策策略。

Q-learning算法的更新规则如下:

Q(s, a) = Q(s, a) + α * (r + γ * max(Q(s', a')) - Q(s, a))

其中,Q(s, a)表示在状态s下采取动作a的Q值,α是学习率,r是当前状态下采取动作a所获得的即时奖励,γ是折扣因子,s'是下一个状态,a'是在下一个状态下的最优动作。

Q-learning算法的步骤如下:

1. 初始化Q值函数为0或随机值。

2. 在每个时间步骤t,根据当前状态s选择一个动作a。

3. 执行动作a,观察环境返回的奖励r和下一个状态s'。4. 根据Q值函数更新规则更新Q值:Q(s, a) = Q(s, a) + α * (r + γ * max(Q(s', a')) - Q(s, a))。

5. 将下一个状态s'设置为当前状态s。

6. 重复步骤2-5直到达到终止条件。

Q-learning算法的优点是可以在没有环境模型的情况下进行学习,并且可以处理连续状态和动作空间。它在许多领域中都有广泛的应用,如机器人控制、游戏策略和自动驾驶等。

二、物流配送路径规划问题介绍

物流配送路径规划问题是指在物流配送过程中,如何合理地安排运输路径,以最小化成本、提高配送效率和满足各种约束条件的问题。该问题在物流领域具有重要的应用价值。

在物流配送路径规划问题中,需要考虑以下因素:

1. 配送需求:包括货物的数量、种类、重量等信息。

2. 配送点:包括供应商、仓库、客户等各个配送点的位置信息。

3. 车辆:包括车辆的数量、容量、速度等信息。

4. 路网:包括道路网络的拓扑结构、距离、通行时间等信息。

5. 约束条件:包括时间窗口约束、车辆容量约束、车辆行驶时间约束等。

为了解决物流配送路径规划问题,研究者们提出了多种优化算法,如遗传算法、粒子群算法、模拟退火算法等。这些算法通过对配送路径进行搜索和优化,以找到最优的配送方案。

在本文中物流配送路径规划问题仅仅考虑路径最短,可以简单抽象为旅行商问题(Traveling salesman problem, TSP)。TSP是一个经典的组合优化问题,它可以描述为一个商品推销员去若干城市推销商品,要求遍历所有城市后回到出发地,目的是选择一个最短的路线。当城市数目较少时,可以使用穷举法求解。而随着城市数增多,求解空间比较复杂,无法使用穷举法求解,因此需要使用优化算法来解决TSP问题。一般地,TSP问题可描述为:一个旅行商需要拜访n个城市,城市之间的距离是已知的,若旅行商对每个城市必须拜访且只拜访一次,求旅行商从某个城市出发并最终回到起点的一条最短路径。

三、Q-learning求解物流配送路径规划

3.1部分Python代码

可以自动生成地图也可导入自定义地图,只需要修改如下代码中chos的值即可。

import matplotlib.pyplot as plt
from Qlearning import Qlearning
#Chos: 1 随机初始化地图; 0 导入固定地图
chos=1
node_num=46#当选择随机初始化地图时,自动随机生成node_num-1个城市
# 创建对象,初始化节点坐标,计算每两点距离
qlearn = Qlearning(alpha=0.5, gamma=0.01, epsilon=0.5, final_epsilon=0.05,chos=chos,node_num=node_num)
# 训练Q表、打印路线
iter_num=8000#训练次数
Curve,BestRoute,Qtable,Map=qlearn.Train_Qtable(iter_num=iter_num)
#Curve 训练曲线
#BestRoute 最优路径
#Qtable Qlearning求解得到的在最优路径下的Q表
#Map TSP的城市节点坐标## 画图
plt.figure()
plt.ylabel("distance")
plt.xlabel("iter")
plt.plot(Curve, color='green')
plt.title("Q-Learning")
plt.savefig('curve.png')
plt.show()

3.2部分结果

(1)随机生成19个城市

Q-learning得到的最短路线: [1, 9, 17, 8, 2, 14, 5, 6, 18, 4, 16, 12, 10, 3, 13, 15, 7, 19, 11, 1]

(2)随机生成20个城市

Q-learning得到的最短路线: [1, 20, 11, 18, 10, 2, 15, 6, 4, 14, 7, 9, 16, 13, 19, 3, 17, 8, 5, 12, 1]

(3)随机生成25个城市

Q-learning得到的最短路线: [1, 5, 21, 17, 16, 6, 3, 20, 13, 23, 19, 12, 2, 18, 22, 11, 8, 14, 4, 15, 25, 24, 9, 7, 10, 1]

四、完整Python代码

这篇关于强化学习应用(七):基于Q-learning的物流配送路径规划研究(提供Python代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610205

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获