基于opencv的指针式仪表的识别与读数

2024-01-13 09:36

本文主要是介绍基于opencv的指针式仪表的识别与读数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对于指针式仪表的识别与读数,可以通过以下步骤使用OpenCV实现

  • 读取图像:使用cv2.imread()函数读取要处理的仪表图像。
    在这里插入图片描述

  • 灰度转换:使用cv2.cvtColor()函数将彩色图像转换为灰度图像。这是因为灰度图像只有一个通道,便于后续的处理。

  • 平滑滤波:为了去除噪声,可以使用中值滤波或高斯滤波。中值滤波通过将每个像素替换为其邻域像素的中值来消除噪声。高斯滤波则是通过计算像素周围邻域像素的加权平均值来平滑图像。你可以根据实际情况选择适合的滤波方法,例如使用cv2.medianBlur()进行中值滤波或使用cv2.GaussianBlur()进行高斯滤波。对于指针式仪表的识别与读数,可以通过以下步骤使用OpenCV实现:

  • 读取图像:使用cv2.imread()函数读取要处理的仪表图像。

  • 灰度转换:使用cv2.cvtColor()函数将彩色图像转换为灰度图像。这是因为灰度图像只有一个通道,便于后续的处理。
    在这里插入图片描述

  • 平滑滤波:为了去除噪声,可以使用中值滤波或高斯滤波。中值滤波通过将每个像素替换为其邻域像素的中值来消除噪声。高斯滤波则是通过计算像素周围邻域像素的加权平均值来平滑图像。你可以根据实际情况选择适合的滤波方法,例如使用cv2.medianBlur()进行中值滤波或使用cv2.GaussianBlur()进行高斯滤波。

  • 边缘检测:使用Canny边缘检测算法来检测图像中的边缘。Canny边缘检测算法首先使用Sobel算子计算图像的梯度强度和方向,然后通过非最大抑制和双阈值处理来提取出真正的边缘。使用cv2.Canny()函数可以方便地进行Canny边缘检测,你可以根据实际情况调整阈值参数。

  • 轮廓提取:使用cv2.findContours()函数来提取边缘图像中的轮廓。轮廓是连续的曲线,可以用来表示物体的形状。通过设置适当的参数,可以选择性地提取出仪表盘的指针轮廓。

  • 指针识别:对于仪表指针,通常可以通过以下特征进行识别:

  • 面积大小:指针通常具有相对较大的面积。

  • 形状:指针通常是细长的形状,可以通过检查轮廓的形状来判断是否为指针。

  • 位置:指针通常位于仪表盘中心附近。

    可以遍历提取到的轮廓,根据以上特征来筛选出指针轮廓。

  • 读数计算:对于选定的指针轮廓,可以通过计算指针与仪表盘中心之间的夹角来得到仪表的读数。可以使用cv2.minEnclosingCircle()函数找到指针的中心点,然后计算指针中心点与仪表盘中心点之间的夹角。

以上就是通过OpenCV对指针式仪表进行读数的一般步骤。根据实际情况,你可能需要调整参数、采取不同的滤波方法或添加其他处理步骤来适应不同的仪表图像。
在这里插入图片描述

  1. 边缘检测:使用Canny边缘检测算法来检测图像中的边缘。Canny边缘检测算法首先使用Sobel算子计算图像的梯度强度和方向,然后通过非最大抑制和双阈值处理来提取出真正的边缘。使用cv2.Canny()函数可以方便地进行Canny边缘检测,你可以根据实际情况调整阈值参数。

  2. 轮廓提取:使用cv2.findContours()函数来提取边缘图像中的轮廓。轮廓是连续的曲线,可以用来表示物体的形状。通过设置适当的参数,可以选择性地提取出仪表盘的指针轮廓。

  3. 指针识别:对于仪表指针,通常可以通过以下特征进行识别:

    • 面积大小:指针通常具有相对较大的面积。
    • 形状:指针通常是细长的形状,可以通过检查轮廓的形状来判断是否为指针。
    • 位置:指针通常位于仪表盘中心附近。

    可以遍历提取到的轮廓,根据以上特征来筛选出指针轮廓。

  4. 读数计算:对于选定的指针轮廓,可以通过计算指针与仪表盘中心之间的夹角来得到仪表的读数。可以使用cv2.minEnclosingCircle()函数找到指针的中心点,然后计算指针中心点与仪表盘中心点之间的夹角。

结果展示

可以看出下图给出了角度值,通过圆盘的固定尺度的丈量,就可以自动化推理出,指数是多少。

在这里插入图片描述

代码与总结

要基于OpenCV对指针式仪表进行读数,可以采用以下步骤:

  • 读取图像:使用cv2.imread()函数读取图像文件,或从摄像头中实时获取图像。
  • 图像预处理:对图像进行预处理,以便提取出仪表盘的指针和刻度线等关键部分。例如,可以使用cv2.cvtColor()函数将图像转换为灰度图像,然后使用cv2.GaussianBlur()函数进行高斯模糊,以去除噪声。
  • 提取特征:使用OpenCV的特征提取算法,如Canny边缘检测、Hough变换等,找到仪表盘的指针和刻度线等关键部分。
  • 计算角度:通过计算指针与刻度线之间的夹角,即可得到仪表的读数。可以使用cv2.minEnclosingCircle()函数找到指针的中心点,然后计算指针中心点与仪表盘中心点之间的夹角。
  • 显示结果:将读数显示在图像上,并将图像显示出来或保存为文本
import cv2
import numpy as np# 读取图像
img = cv2.imread('meter.jpg')# 图像预处理
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)# 提取特征
edges = cv2.Canny(blur, 50, 200, apertureSize=3)
lines = cv2.HoughLines(edges, 1, np.pi/180, 100)# 找到指针和刻度线
for line in lines:rho, theta = line[0]if theta < np.pi/4 or theta > 3*np.pi/4:x0 = np.cos(theta) * rhoy0 = np.sin(theta) * rhopt1 = (int(x0 + 1000*(-np.sin(theta))), int(y0 + 1000*np.cos(theta)))pt2 = (int(x0 - 1000*(-np.sin(theta))), int(y0 - 1000*np.cos(theta)))cv2.line(img, pt1, pt2, (0, 0, 255), 3)# 计算角度
center = (img.shape[1]//2, img.shape[0]//2)

最后

#联系qq1309399183

这篇关于基于opencv的指针式仪表的识别与读数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/601004

相关文章

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O