C桑(Cython)从入门到入土(2): np数组操作对比

2024-01-12 21:36

本文主要是介绍C桑(Cython)从入门到入土(2): np数组操作对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

C桑(Cython)从入门到入土

2. np数组操作对比

Node sc518 Copy has image data of type unsigned long long

实际上, 👆🏻这个错误是我探索Cython的缘起…

code1:

Form:

更现代的方法是使用内存视图而不是指针:

cdef np.uint32_t[:,:,::1] mv_buff = np.ascontiguousarray(im, dtype = np.uint32)

[:,;,::1] 语法告诉 Cython 内存视图在内存中是 3D 和 C 连续的。将类型定义为内存视图而不是 numpy 数组的优点是
它可以接受定义缓冲区接口的任何类型,例如内置数组模块或来自 PIL 成像库的对象。
Memoryviews 可以在不持有 GIL 的情况下传递,这对于并行代码很有用
要从内存视图获取指针,请获取第一个元素的地址:

cdef np.uint32_t* im_buff = &mv_buff[0,0,0]

这比 <np.uint32_t*>mv_buff.data 更好,因为它避免了强制转换,并且强制转换通常可以隐藏错误。

👇的内容是小度在这里插入图片描述的回答:

这段代码涉及到Cython中的内存视图和numpy数组的使用。Cython是一种用来编写C扩展的Python语言,它可以提高Python代码的执行效率。让我们逐步解释这段代码:

  1. cdef np.uint32_t[:,:,::1] mv_buff = np.ascontiguousarray(im, dtype = np.uint32):

    • cdef np.uint32_t[:,:,::1] mv_buff: 这定义了一个3D的内存视图mv_buff,其数据类型为np.uint32_t(无符号32位整数)。:表示这个维度是开放的,也就是说它的大小可以根据源数组im的大小来自动确定。
    • np.ascontiguousarray(im, dtype = np.uint32): 这个函数将输入的numpy数组im转换为连续的内存布局,并指定数据类型为np.uint32_t
  2. [:,;,::1] 语法告诉 Cython 内存视图在内存中是 3D 和 C 连续的。:

    • [:,;,::1]是Cython中的内存视图语法,它定义了数组的维度和连续性。这里它表示一个3D的数组,并且在内存中是C风格连续的(即行优先)。
  3. 将类型定义为内存视图而不是 numpy 数组的优点是:

    • 可以接受定义缓冲区接口的任何类型,例如内置数组模块或来自 PIL 成像库的对象。
    • Memoryviews 可以在不持有 GIL 的情况下传递,这对于并行代码很有用。
  4. 要从内存视图获取指针,请获取第一个元素的地址:

    • cdef np.uint32_t* im_buff = &mv_buff[0,0,0]: 这行代码获取了内存视图mv_buff中第一个元素的地址,并将其赋给指针im_buff。这意味着现在可以通过这个指针直接访问和修改mv_buff中的数据。

简而言之,这段代码的主要目的是将一个numpy数组转换为连续的内存布局(使用Cython的内存视图),并获取该内存视图的第一个元素的地址。这样做通常是为了提高数据访问的效率或与需要连续内存布局的C/C++代码进行交互。

code2

From

from cython.cimports.cython.view import array as cvarray
import numpy as np# Memoryview on a NumPy array
narr = np.arange(27, dtype=np.dtype("i")).reshape((3, 3, 3))
narr_view = cython.declare(cython.int[:, :, :], narr)# Memoryview on a C array
carr = cython.declare(cython.int[3][3][3])
carr_view = cython.declare(cython.int[:, :, :], carr)# Memoryview on a Cython array
cyarr = cvarray(shape=(3, 3, 3), itemsize=cython.sizeof(cython.int), format="i")
cyarr_view = cython.declare(cython.int[:, :, :], cyarr)# Show the sum of all the arrays before altering it
print(f"NumPy sum of the NumPy array before assignments: {narr.sum()}")# We can copy the values from one memoryview into another using a single
# statement, by either indexing with ... or (NumPy-style) with a colon.
carr_view[...] = narr_view
cyarr_view[:] = narr_view
# NumPy-style syntax for assigning a single value to all elements.
narr_view[:, :, :] = 3# Just to distinguish the arrays
carr_view[0, 0, 0] = 100
cyarr_view[0, 0, 0] = 1000# Assigning into the memoryview on the NumPy array alters the latter
print(f"NumPy sum of NumPy array after assignments: {narr.sum()}")# A function using a memoryview does not usually need the GIL
@cython.nogil
@cython.ccall
def sum3d(arr: cython.int[:, :, :]) -> cython.int:i: cython.size_tj: cython.size_tk: cython.size_tI: cython.size_tJ: cython.size_tK: cython.size_ttotal: cython.int = 0I = arr.shape[0]J = arr.shape[1]K = arr.shape[2]for i in range(I):for j in range(J):for k in range(K):total += arr[i, j, k]return total# A function accepting a memoryview knows how to use a NumPy array,
# a C array, a Cython array...
print(f"Memoryview sum of NumPy array is {sum3d(narr)}")
print(f"Memoryview sum of C array is {sum3d(carr)}")
print(f"Memoryview sum of Cython array is {sum3d(cyarr)}")
# ... and of course, a memoryview.
print(f"Memoryview sum of C memoryview is {sum3d(carr_view)}")
# 此代码应提供以下输出:NumPy sum of the NumPy array before assignments: 351
NumPy sum of NumPy array after assignments: 81
Memoryview sum of NumPy array is 81
Memoryview sum of C array is 451
Memoryview sum of Cython array is 1351
Memoryview sum of C memoryview is 451

👇的内容是小度在这里插入图片描述的回答:

这段代码主要是关于Cython的内存视图(memoryview)特性,以及如何使用Cython与NumPy、C数组和Cython数组进行交互。下面是对代码的详细解释:

  1. 导入相关模块:

    • from cython.cimports.cython.view import array as cvarray: 导入Cython的carray(C风格数组)作为cvarray。
    • import numpy as np: 导入NumPy库。
  2. 创建NumPy数组:

    • narr = np.arange(27, dtype=np.dtype("i")).reshape((3, 3, 3)): 创建一个形状为(3,3,3)的整数数组,并初始化其值。
  3. 声明Cython内存视图:

    • narr_view = cython.declare(cython.int[:, :, :], narr): 为NumPy数组创建一个Cython内存视图。
    • carr = cython.declare(cython.int[3][3][3]): 声明一个C风格的3x3x3整数数组。
    • cyarr = cvarray(shape=(3, 3, 3), itemsize=cython.sizeof(cython.int), format="i"): 创建一个Cython的carray。
  4. 显示数组和赋值:

    • print(f"NumPy sum of the NumPy array before assignments: {narr.sum()}"): 在赋值之前打印NumPy数组的总和。
    • carr_view[...] = narr_viewcyarr_view[:] = narr_view: 将NumPy数组的值复制到C风格数组和Cython数组中。
    • narr_view[:, :, :] = 3: 将NumPy数组的所有元素设置为3。
    • carr_view[0, 0, 0] = 100cyarr_view[0, 0, 0] = 1000: 分别设置C风格数组和Cython数组的特定元素值。
  5. 检查赋值后的总和:

    • print(f"NumPy sum of NumPy array after assignments: {narr.sum()}"): 在赋值之后打印NumPy数组的总和,由于所有元素都被设置为3,所以总和应为27。
  6. 定义一个使用内存视图的函数:

    • @cython.nogil@cython.ccall 是Cython的装饰器,它们允许函数在没有全局解释器锁(GIL)的情况下运行,并允许直接调用C函数。
    • sum3d 函数接受一个三维整数数组作为参数,并返回其所有元素的总和。
  7. 调用内存视图函数:
    使用先前定义的sum3d函数,分别对NumPy数组、C风格数组、Cython数组以及C风格的内存视图调用该函数,并打印结果。

总的来说,这段代码展示了如何使用Cython的内存视图来与NumPy、C风格数组和Cython数组进行交互,以及如何通过内存视图进行高效的数值计算。

小结

C桑 这种啰嗦的语言风格, 真是让Python🐶抓狂😖…

不过, 这种高效倒是真的…

我们现在比纯 Python 版本快 7558 倍,比 NumPy 快 11.1 倍!
以上
未完待续

这篇关于C桑(Cython)从入门到入土(2): np数组操作对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/599222

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

Java数组初始化的五种方式

《Java数组初始化的五种方式》数组是Java中最基础且常用的数据结构之一,其初始化方式多样且各具特点,本文详细讲解Java数组初始化的五种方式,分析其适用场景、优劣势对比及注意事项,帮助避免常见陷阱... 目录1. 静态初始化:简洁但固定代码示例核心特点适用场景注意事项2. 动态初始化:灵活但需手动管理代

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行