多模态PCANet:一种高精度、低复杂度的鲁棒3D活体检测方案

本文主要是介绍多模态PCANet:一种高精度、低复杂度的鲁棒3D活体检测方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多模态PCANet:一种高精度、低复杂度的鲁棒3D活体检测方案

——基于ToF的3D活体检测算法研究

作者:陈发全 王伟行

当下正值新冠肺炎(COVID-19)肆虐全球之际,戴口罩成为了全民阻断病毒传播的最佳方式。然而在人脸部分遮挡或恶劣光照条件下,用户人脸识别或人脸认证的合法访问常常提示活体检测失败,甚至根本检测不到人脸。这是由于目前基于RGB等2D空间的主流活体检测方案未考虑光照、遮挡等干扰因素对于检测的影响,而且存在计算量大的缺点。而数迹智能团队研发的3D SmartToF活体检测方案则可以有效解决此问题。那么什么是活体检测?什么又是3D活体检测?以及怎么实现恶劣环境(如人脸遮挡、恶劣光照等)与人脸多姿态变化(如侧脸、表情等)应用场景下的活体检测呢?本文将会围绕这些问题,介绍数迹智能的最新成果——基于ToF的3D活体检测算法。

1. 什么是活体检测?

根据IEEE首个生物特征活体检测国际标准[26]定义,生物特征识别系统捕获访问对象并自动检测呈现攻击(Presentation Attack, PA)的过程统称为攻击检测(Presentation Attack Detection, PAD),又称为活体检测。

人脸活体检测作为人脸识别技术的先决条件,对保障人脸识别系统的安全性具有重大意义。本文讨论的呈现攻击仅限与关于人脸的非活体呈现攻击,如照片、回放视频以及人脸面具等。

2. 活体检测研究现状

根据活体检测国际标准[26],基于对象的人脸活体检测方法可分为被动检测与主动检测。主动检测通常需要用户根据指令完成规定动作,根据连续帧动作完成情况判断是否为活体,操作繁琐且耗时较长,用户体验感较差;而被动检测通过对单帧人脸图像判断是否为活体,以其自然性、实时性,更适用于不同应用场景。

本文针对被动活体检测任务,根据人脸图像数据维度分作2D活体检测、伪3D活体检测以及3D活体检测。3D活体检测是指利用双目、结构光、ToF相机,获得点云图或深度图等3D空间结构信息进行活体检测的统称。接下来将对每一类活体检测进行简单介绍与总结。

图2-1 活体检测算法分类

2.1 2D活体检测

2D活体检测未利用任何的空间结构信息,现存的2D活体检测算法包括基于传统的特征提取与基于深度学习方法。传统的特征提取方法包括特征描述子如局部二值模式(LBP)[1]、梯度方向直方图(HOG)[3]、灰度共生矩阵(GLCM)[4]等,以及利用图像失真[8]分析活体与非活体之间的差异性;传统算法根据活体与欺骗攻击的差异来设计特征,最后通过分类器决策;基于深度学习方法则是使用卷积神经网络将低阶特征(像素、纹理、方向等)逐层编码,获取图像的高阶表示。

在算法复杂度层面,传统的算法复杂度低但准确率相对较低。针对手动设计的差异如纹理、颜色等,在样本自身或者外部因素发生变化时,算法性能受到极大的影响,算法自身的泛化性和鲁棒性较差。如Schwartz等[4]利用灰度共生矩阵(GLCM)表征人脸图像灰度空间内方向、变换快慢和幅度的综合信息。基于深度学习算法的复杂度和准确率相对较高,Yang等[10]利用卷积神经网络(CNN)进行端到端的有监督学习,将活体检测当做一个二分类任务,自动提取图像特征,并直接用参数表达。与传统方法不同的是,深度学习算法的特征理解具有不可解释性,但是其自适应特征提取过程在一定程度上增强活体检测算法的泛化性能。同时深度神经网络也存在的过拟合、梯度消失、梯度爆炸等一系列问题。

2.2 伪3D活体检测

伪3D活体检测指基于RGB图像使用深度估计算法间接得到空间结构信息的活体检测算法。Wang等[15]从RGB图像中恢复稀疏的3D面部结构以进行活体检测,这也是首次将估计的3D结构信息用于活体检测。Atoum等[16]则利用RGB图像估计深度信息,设计双流CNN网络结合颜色纹理与深度结构特征实现活体检测算法,其估计3D深度信息的过程是:将训练图像从RGB空间转化到HSV、YCbCr空间,利用3D脸部匹配算法与3DMM模型计算深度图像标签。伪3D活体检测利用RGB图像估计深度信息,虽然不需要额外的深度相机设备进行采集3D数据,但是除了存在计算量大的缺点之外,最关键的是估计数据与实测数据存在较大偏差,直接影响了活体检测的准确性。

2.3 3D活体检测

3D活体检测则直接利用深度相机获取空间结构信息实现活体检测算法。Wang等[21]利用Kinect深度相机采集的深度信息,通过提取深度图的LBP特征以及CNN学习到RGB图像的纹理特征,再送入SVM分类完成活体检测。Zhang等[19][20]公开了大尺度、多模态

这篇关于多模态PCANet:一种高精度、低复杂度的鲁棒3D活体检测方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/594979

相关文章

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

C#实现高性能拍照与水印添加功能完整方案

《C#实现高性能拍照与水印添加功能完整方案》在工业检测、质量追溯等应用场景中,经常需要对产品进行拍照并添加相关信息水印,本文将详细介绍如何使用C#实现一个高性能的拍照和水印添加功能,包含完整的代码实现... 目录1. 概述2. 功能架构设计3. 核心代码实现python3.1 主拍照方法3.2 安全HBIT

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、