Python数据挖掘学习笔记(7)频繁模式挖掘算法----FP-growth

本文主要是介绍Python数据挖掘学习笔记(7)频繁模式挖掘算法----FP-growth,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、相关原理

       FP-Growth算法是韩嘉炜等人在2000年提出的关联分析算法,它采取如下分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-tree),但仍保留项集关联信息。在算法中使用了一种称为频繁模式树(Frequent Pattern Tree)的数据结构。FP-tree是一种特殊的前缀树,由频繁项头表和项前缀树构成。FP-Growth算法基于以上的结构加快整个挖掘过程。

       FP-growth算法只需要对数据库进行了两次扫描,而Apriori算法对于每个潜在的频繁项集都会扫描数据集判定给定模式是否频繁,因此FP-growth算法的速度要比Apriori算法快。在小规模数据集上,这不是什么问题,但是当处理大规模数据集时,就会产生很大的区别。大致流程如下图:

                                        

       关于FP-growth算法需要注意的两点是:

     (1)该算法采用了与Apriori完全不同的方法来发现频繁项集

     (2)该算法虽然能更为高效地发现频繁项集,但不能用于发现关联规则。

       从FP-growth算法挖掘频繁项集这个流程图中可以看出,FP-growth算法主要有两个步骤,即构建FP树以及从FP树中挖掘频繁项集。

       其他相关原理可查看相关文章,推荐机器学习实战一书。

二、编写代码

1、数据初始化方法:

#创建数据集
def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDat#数据格式化
def createInitSet(dataSet):retDict = {}for trans in dataSet:#print(trans)fset = frozenset(trans)#print(fset)retDict.setdefault(fset, 0) #返回指定键的值,如果没有则添加一个键#print(retDict)retDict[fset] += 1#print(retDict)return retDict

2、FP的数据结构类:

#FP树的数据结构类
class treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValue       #名字变量self.count = numOccur       #计数变量(频率)self.nodeLink = None        #链接相似元素项self.parent = parentNode    #当前父节点self.children = {}          #用于存放子节点def inc(self, numOccur): #对count变量增加给定值self.count += numOccur def disp(self, ind=1):  #将树以文本形式显示,主要是方便调试。print(' '*ind, self.name, ' ', self.count)for child in self.children.values():child.disp(ind+1)         #子节点向右缩减

3、创建FP树的相关方法:

#更新头指针表
def updateHeader(nodeToTest, targetNode):  while (nodeToTest.nodeLink != None):  nodeToTest = nodeToTest.nodeLinknodeToTest.nodeLink = targetNode#FP树的生长函数
def updateTree(items, myTree, headerTable, count):if items[0] in myTree.children:  myTree.children[items[0]].inc(count)else:  myTree.children[items[0]] = treeNode(items[0], count, myTree)if headerTable[items[0]][1] == None:headerTable[items[0]][1] = myTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], myTree.children[items[0]])if len(items) > 1:  updateTree(items[1:], myTree.children[items[0]], headerTable, count)#创建FP树,默认最小支持度为1,将根据支持度对数据进行第一次过滤
def createTree(dataSet, minSup=1):headerTable = {}#第一次遍历数据集, 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] = headerTable.get(item, 0) + 1#根据最小支持度过滤lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))for k in lessThanMinsup:del(headerTable[k])freqItemSet = set(headerTable.keys())#如果所有数据都不满足最小支持度,返回None, Noneif len(freqItemSet) == 0:return None, Nonefor k in headerTable:headerTable[k] = [headerTable[k], None]myTree = treeNode('φ', 1, None)#第二次遍历数据集,构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度localD = {}for item in tranSet:if item in freqItemSet:localD[item] = headerTable[item][0]if len(localD) > 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems = [v[0] for v in sorted(localD.items(), key=lambda p:(p[1],p[0]), reverse=True)]updateTree(orderedItems, myTree, headerTable, count)return myTree, headerTable

4、从FP树中获得条件模式基

#迭代上溯整棵树
def ascendTree(leafNode, prefixPath):if leafNode.parent != None:prefixPath.append(leafNode.name)ascendTree(leafNode.parent, prefixPath)
#遍历链表
def findPrefixPath(basePat, headerTable):condPats = {}treeNode = headerTable[basePat][1]while treeNode != None:prefixPath = []ascendTree(treeNode, prefixPath)if len(prefixPath) > 1:condPats[frozenset(prefixPath[1:])] = treeNode.counttreeNode = treeNode.nodeLinkreturn condPats

5、创造条件FP树

def mineTree(inTree, headerTable, minSup=1, preFix=set([]), freqItemList=[]):#排序minSup asc, value ascbigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: (p[1][0],p[0]))]for basePat in bigL:newFreqSet = preFix.copy()newFreqSet.add(basePat)freqItemList.append(newFreqSet)# 通过条件模式基找到的频繁项集condPattBases = findPrefixPath(basePat, headerTable)myCondTree, myHead = createTree(condPattBases, minSup)if myHead != None:print('condPattBases: ', basePat, condPattBases)myCondTree.disp()print('*' * 30)mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)

6、运行:

#初始化数据集
simpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
freqItems=[] #存储频繁项集
#创建FP树,支持度设为3
myFPTree,myheader = createTree(dictDat, 3)
#创建条件FP树,支持度设为2
mineTree(myFPTree, myheader, 2 ,set([]),freqItems)
print('频繁项集为'+str(freqItems))

7、运行结果:

condPattBases:XXXX是频繁项的前缀路径,下面的是条件FP树。

三、参考资料

1、Harrington P , 李锐等. 机器学习实战[M]. 人民邮电出版社, 2013.

2、https://www.bilibili.com/video/av40754697 (推荐购买完整版)

3、https://blog.csdn.net/dq_dm/article/details/38111097

这篇关于Python数据挖掘学习笔记(7)频繁模式挖掘算法----FP-growth的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/593599

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.