Python数据挖掘学习笔记(5)决策树分类算法----以ID3为例

2024-01-11 07:32

本文主要是介绍Python数据挖掘学习笔记(5)决策树分类算法----以ID3为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、相关原理        

        决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。

       在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3C4.5C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。

       信息熵,是一个数学上颇为抽象的概念,在这里不妨把信息熵理解成某种特定信息的出现概率。而信息熵和热力学熵是紧密相关的。根据Charles H. Bennett对Maxwell's Demon的重新解释,对信息的销毁是一个不可逆过程,所以销毁信息是符合热力学第二定律。而产生信息,则是为系统引入负(热力学)熵的过程。所以信息熵的符号与热力学熵应该是相反的。

       总而言之,决策树又叫做分类树,它是一种十分常用的分类方法。同时也是一种监督学习,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类,这样的机器学习就被称之为监督学习。

二、数据准备

     现有若干外卖商户信息示例数据如下:

    

   下载地址:链接:https://pan.baidu.com/s/1sC2tSUJlCN7O1kO8A9tH7g  提取码:0vhf 

三、实现思路

      目标:在已知“是否中餐”、“餐品数”、“是否满减”、“是否有运费”的条件下,预测新商户的外卖销售购买量。

四、编写代码

1、模块准备:

#用来导入数据
import pandas as pda
#用来建立决策树
from sklearn.tree import DecisionTreeClassifier as DTC
#用来可视化决策树
from sklearn.tree import export_graphviz
from sklearn.externals.six import StringIO

2、数据准备:

#导入数据
fname="E:/Meal.csv"
dataf=pda.read_csv(fname)
#读取自变量数据,即“是否中餐”、“餐品数”、“是否满减”、“是否有运费”等
x=dataf.iloc[:,1:5].values#除.values还可以使用.as_matrix(),但不推荐
#读取因变量数据,即购买量
y=dataf.iloc[:,5].values

3、数据处理:

      (1) 由于现有的矩阵里的信息都是“高低”、“多少”、“是否”等表述,需将它们转换为数字。

      (2)注意不要拿处理后的矩阵直接dtc训练,因为目前x是object类型的,y是一维数组而不是二维的,因此需要进行格式转换,将它们转换为二维数值矩阵。方法是先将它们转化为数据框,然后再转化为数组并指定格式。

#将矩阵元素转换为数字
for i in range(0,len(x)):for j in range(0,len(x[i])):thisdata=x[i,j]if(thisdata=="是" or thisdata=="多" or thisdata=="高"):x[i,j]=int(1)else:x[i,j]=int(-1)
for i in range(0,len(y)):thisdata=y[i]if(thisdata=="高"):y[i]=1else:y[i]=-1
#先转换为数据框
xf=pda.DataFrame(x)
yf=pda.DataFrame(y)
#再转换为数值数组
x2=xf.values.astype(int)
y2=yf.values.astype(int)

4、建立决策树:

#依据信息熵建立决策树
dtc=DTC(criterion="entropy")
dtc.fit(x2,y2)#导入训练数据

5、可视化决策树:

#可视化决策树,指定四个自变量的名称
with open("E:/dtc.dot","w") as file:export_graphviz(dtc,feature_names=["MealType","ItemNum","MoneyOff","Freight"],out_file=file)

      之后,即可在目标目录下找到可视化的决策树文件dtc.dot,需要安装graphviz进行打开。

五、使用graphviz查看决策树可视化结果

1、安装Graphviz:下载地址:http://down2.opdown.com:8081/opdown/graphviz.zip

2、安装完毕后,进入安装目录的bin文件夹,保存当前的路径地址。

3、将保存的路径地址加入系统环境变量Path,如图:

4、打开CMD,通过cd指令进入代码生成的dtc.dot文件所在目录,输入以下指令并回车:

dot -Tpng dtc.dot -o food.png

   dtc.dot是上面代码生成的决策树可视化文件,food.png是该文件转换的图片文件名称。我的运行截图如下:

5、进入代码生成的dtc.dot的同级目录,可以看到转换的food.png文件已生成:

  

六、可视化结果解释

    以顶层为例:

  

     第一行表示筛选条件,即是否为中餐,由于是表示为1,否表示为-1,因此若为是则向右分支,若为否则向左分支。

     第二行表示信息熵的大小,此处为0.999,信息熵越大,则表示可信度越高。

     第三行表示样本数,此处为29条,也是数据的总数。

     第四行表示下面一层分支的数目,是否中餐的判别中若为是则向右分支共15个,若为否则向左分支共14个。

   然后每往下一层,则表示根据自变量删选了一次,如左侧分支第二层表示是否为中餐的结果,左侧分支第三层表示是否满减的结果,左侧分支第四层表示餐品数的筛选结果,左侧分支第五层表示是否有运费的筛选结果。

七、使用决策树结果进行预测

    现有一个商户数据:“是否中餐”:否、“餐品数”:多、“是否满减”:是、“是否有运费”:否

    要运用决策树对该商户的购买量进行预测:

   (1)首先看到其“是否中餐”为否,则进入左分支。

   (2)再看到其“是否满减”为是,则进入右分支。

   (3)其“餐品数”为多,则进入右分支。

   (4)其“是否有运费”为否,则进入左分支。

    路线如下图:

    

      看到最后的结果:

    

     则可得出结果,销量高的可能性较大,因为value中2>1.

这篇关于Python数据挖掘学习笔记(5)决策树分类算法----以ID3为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/593597

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰