【机器学习】Tensorflow神经网络分析Kaggle的Titanic数据集

本文主要是介绍【机器学习】Tensorflow神经网络分析Kaggle的Titanic数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Titanic这也算是一个很经典的案例了,详情见【官网详情】(博主提交了一次,很菜七千多名,正确率:0.76555,排名有点渣,日后再优化,优化后,到两千多哈哈,0.79....左右,,还有很大的上升空间

分析一个案例我主要是一下几步:

【1】导入依赖,加载数据

【2】分析数据,了解数据

【3】格式化数据,预处理数据

【4】建立模型,训练模型

【5】使用模型,测试模型

基本就这五大步骤,

【1】导入依赖,加载数据

import pandas as pd
from pandas import Series,DataFrame
import numpy as np
import matplotlib.pyplot as plt# 设置图表中字体
import matplotlib as mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']data_train = pd.read_csv('../data/train.csv')
data_train.head()


data_train.head()主要是看看,数据是否加载上,是否家在正确。


【2】分析数据,了解数据

data_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          189 non-null object
Embarked       891 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
• PassengerId => 乘客ID
• Survived => 获救情况(1为获救,0为未获救)
• Pclass => 乘客等级(1/2/3等舱位)
• Name => 乘客姓名
• Sex => 性别
• Age => 年龄
• SibSp => 堂兄弟/妹个数
• Parch => 父母与小孩个数
• Ticket => 船票信息
• Fare => 票价
• Cabin => 客舱
• Embarked => 登船港口

data_train.describe()

        PassengerId	Survived	Pclass	           Age	          SibSp 	Parch	          Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200
count:汇总,mean:平均数,std:标准差(我猜的),min,max最大最小,25%,75%,50%,指的是中位数,

fig = plt.figure(figsize=(15,10))
fig.set(alpha=0.2)  # 设定图表颜色alpha参数plt.subplot2grid((2,3),(0,0))             # 在一张大图里分列几个小图
data_train.Survived.value_counts().plot(kind='bar')# 柱状图 
plt.title(u"获救情况 (1为获救)") # 标题
plt.ylabel(u"人数")  plt.subplot2grid((2,3),(0,1))
data_train.Pclass.value_counts().plot(kind="bar")
plt.ylabel(u"人数")
plt.title(u"乘客等级分布")plt.subplot2grid((2,3),(0,2))
plt.scatter(data_train.Survived, data_train.Age)
plt.ylabel(u"年龄")                         # 设定纵坐标名称
plt.grid(b=True, which='major', axis='y') 
plt.title(u"按年龄看获救分布 (1为获救)")plt.subplot2grid((2,3),(1,0), colspan=2)
data_train.Age[data_train.Pclass == 1].plot(kind='kde')   
data_train.Age[data_train.Pclass == 2].plot(kind='kde')
data_train.Age[data_train.Pclass == 3].plot(kind='kde')
plt.xlabel(u"年龄")# plots an axis lable
plt.ylabel(u"密度") 
plt.title(u"各等级的乘客年龄分布")
plt.legend((u'头等舱', u'2等舱',u'3等舱'),loc='best') # sets our legend for our graph.plt.subplot2grid((2,3),(1,2))
data_train.Embarked.value_counts().plot(kind='bar')
plt.title(u"各登船口岸上船人数")
plt.ylabel(u"人数")  
plt.show()

这几张图分别对获救情况、乘客等级、个口岸上船人数进行统计,右上角年龄与获救情况关系图,基本看不出来有关系,左下角乘客年龄与舱等级的分布,可分析出20-30岁的乘客较多的选择2-3等舱 大哭(年轻,最穷的时候),30-50岁普遍选择头等舱 生气(黄金时期)

#看看各乘客等级的获救情况
fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数Survived_0 = data_train.Pclass[data_train.Survived == 0].value_counts()
Survived_1 = data_train.Pclass[data_train.Survived == 1].value_counts()
df=pd.DataFrame({u'获救':Survived_1, u'未获救':Survived_0})
df.plot(kind='bar', stacked=True)#化成两层
plt.title(u"各乘客等级的获救情况")
plt.xlabel(u"乘客等级") 
plt.ylabel(u"人数") 
plt.show()

plt.plot(np.arange(3)+1,np.array(Survived_1/Survived_0))

下面图是对根据上图比例画出的线,关系已经很明显了,有钱真好,三等舱的获救率非常低
#看看各性别的获救情况
fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数Survived_m = data_train.Survived[data_train.Sex == 'male'].value_counts()
Survived_f = data_train.Survived[data_train.Sex == 'female'].value_counts()
df=pd.DataFrame({u'男性':Survived_m, u'女性':Survived_f})
df.plot(kind='bar', stacked=True)
plt.title(u"按性别看获救情况")
plt.xlabel(u"性别") 
plt.ylabel(u"人数")
plt.show()

都不用再画折线图了,很明显,女性获救几率,远大于男性,“妇女和孩子线上救生船”
#然后我们再来看看各种舱级别情况下各性别的获救情况
fig=plt.figure(figsize=(15,7))
fig.set(alpha=0.65) # 设置图像透明度,无所谓
plt.title(u"根据舱等级和性别的获救情况")ax1=fig.add_subplot(141)
data_train.Survived[data_train.Sex == 'female'][data_train.Pclass != 3].value_counts().plot(kind='bar', label="female highclass", color='#FA2479')
ax1.set_xticklabels([u"获救", u"未获救"], rotation=0)
ax1.legend([u"女性/高级舱"], loc='best')ax2=fig.add_subplot(142, sharey=ax1)
data_train.Survived[data_train.Sex == 'female'][data_train.Pclass == 3].value_counts().plot(kind='bar', label='female, low class', color='pink')
ax2.set_xticklabels([u"未获救", u"获救"], rotation=0)
plt.legend([u"女性/低级舱"], loc='best')ax3=fig.add_subplot(143, sharey=ax1)
data_train.Survived[data_train.Sex == 'male'][data_train.Pclass != 3].value_counts().plot(kind='bar', label='male, high class',color='lightblue')
ax3.set_xticklabels([u"未获救", u"获救"], rotation=0)
plt.legend([u"男性/高级舱"], loc='best')ax4=fig.add_subplot(144, sharey=ax1)
data_train.Survived[data_train.Sex == 'male'][data_train.Pclass == 3].value_counts().plot(kind='bar', label='male low class', color='steelblue')
ax4.set_xticklabels([u"未获救", u"获救"], rotation=0)
plt.legend([u"男性/低级舱"], loc='best')plt.show()


贵族女性几乎全部获救,是否获救和身份、性别关系很大。

fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数Survived_0 = data_train.Embarked[data_train.Survived == 0].value_counts()
Survived_1 = data_train.Embarked[data_train.Survived == 1].value_counts()
df=pd.DataFrame({u'获救':Survived_1, u'未获救':Survived_0})
df.plot(kind='bar', stacked=True)
plt.title(u"各登录港口乘客的获救情况")
plt.xlabel(u"登录港口") 
plt.ylabel(u"人数") plt.show()

三个港口与获救关系几乎持平,关系不是很大(关系不大也加入模型,只是权值小一些而已)

plt.figure(figsize=(15,7))
Survived_0 = data_train.SibSp[data_train.Survived == 0].value_counts()
Survived_1 = data_train.SibSp[data_train.Survived == 1].value_counts()
df=pd.DataFrame({u'获救':Survived_1, u'未获救':Survived_0})
df.plot(kind='bar', stacked=True)
plt.title(u"堂兄弟/妹个数数量与获救情况")
plt.xlabel(u"堂兄弟/妹个数数量") 
plt.ylabel(u"人数") 
plt.show()
plt.plot(np.arange(7),Survived_1/Survived_0)
plt.title(u"堂兄弟/妹个数数量与获救/未获救的比例")

根据右边折线图可以看出来,,有一个兄弟姐妹的获救概率比较大,是否获救和堂兄弟姐妹关系比较大。

基本上数据关系分析完了,这主要目的是为模型输入选取合适的参数。

【3】格式化数据,预处理数据

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          189 non-null object
Embarked       891 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB

Age和Cabin有缺失参数,由于Cabin缺失过半,暂不考虑使用此数据,Age比较重要,此处用平均值补全。

#为了简便年了暂时用平均数代替,
data_train.Age[data_train.Age.isnull()] = data_train.Age.mean()
#Cabin 缺少太多了,暂且踢掉
try:train_x = data_train[['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked']]
except:pass
train_x.info()

此处选择这几项参数【['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked']】

PassengerId,name没有实际含义去除即可,

      Pclass	Sex	 Age   SibSp	 Parch	Fare   Embarked
0	3	male	22.0	1	   0	7.2500	S
1	1	female	38.0	1	   0	71.2833	C
2	3	female	26.0	0	   0	7.9250	S
3	1	female	35.0	1	   0	53.1000	S
4	3	male	35.0	0	   0	8.0500	S

其中Sex和Embarked还是字符串的,需要数字化,

train_x.Sex.value_counts()
 
male      577
female    314
Name: Sex, dtype: int64
train_x.Embarked.value_counts()
S    645
C    169
Q     77
Name: Embarked, dtype: int64
Sex有两个属性,Embarked有三个属性,所以可以做如下赋值
 
train_x.Sex[train_x.Sex=='male'] = 1
train_x.Sex[train_x.Sex=='female'] = 0
train_x.Embarked[train_x.Embarked=='S'] = 0
train_x.Embarked[train_x.Embarked=='C'] = 0.5
train_x.Embarked[train_x.Embarked=='Q'] = 1

【4】建立模型,训练模型

都是老套路,主要学习莫烦的神经网络教程

"""
添加神经网络层的函数
inputs -- 输入内容
in_size -- 输入尺寸
out_size -- 输出尺寸
activation_function --- 激励函数,可以不用输入
"""
def add_layer(inputs,in_size,out_size,activation_function=None):W = tf.Variable(tf.zeros([in_size,out_size])+0.01)   #定义,in_size行,out_size列的矩阵,随机矩阵,全为0效果不佳b = tf.Variable(tf.zeros([1,out_size])+0.01)              #不建议为0Wx_plus_b = tf.matmul(inputs,W) + b                # WX + bif activation_function is None:                               #如果有激励函数就激励,否则直接输出output = Wx_plus_belse:output = activation_function(Wx_plus_b)return output
import tensorflow as tf
X = tf.placeholder(tf.float32,[None,7])
Y = tf.placeholder(tf.float32,[None,1])output1 = add_layer(X,7,14,activation_function = tf.nn.sigmoid)
output2 = add_layer(output1,14,7,activation_function = tf.nn.sigmoid)
temp_y = add_layer(output2,7,1,activation_function = tf.nn.sigmoid)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(Y-temp_y),reduction_indices=[1]))#先求平方,再求和,在求平均train_step = tf.train.AdamOptimizer(0.004).minimize(loss)#通过优化器,以0.1的学习率,减小误差loss
# train_x = iris[['a','b','c']]
# train_y = iris[['class']]#拆分训练集数据集,分为输入和输出
train_x = np.array(train_x).reshape(-1,7)
train_y = data_train.Survived.reshape(-1,1)sess = tf.Session()
sess.run(tf.global_variables_initializer())
save_process = []
for i in range(300000):#训练90000次sess.run(train_step,feed_dict={X:train_x,Y:train_y})if i%300 == 0:#每300次记录损失值(偏差值)save_process.append(sess.run(loss,feed_dict={X:train_x,Y:train_y}))if i%3000 == 0:#每300次记录损失值(偏差值)print(sess.run(loss,feed_dict={X:train_x,Y:train_y}))

画出loss曲线

#第前两个数据比较大,踢掉
save_process = np.delete(save_process,[0,1])
plt.plot(range(len(save_process)),save_process)

模型训练的还阔以,测试一下


【5】使用模型,测试模型

test_csv = pd.read_csv("../data/test.csv")

测试数据需要和训练数据有同样的预处理,所以讲预处理过程封装成函数:

def preprocessing(data):""""""items = ['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked']data.Age[data.Age.isnull()] = data.Age.mean()test_x = data[items]test_x.Sex[test_x.Sex=='male'] = 1test_x.Sex[test_x.Sex=='female'] = 0test_x.Embarked[test_x.Embarked=='S'] = 0test_x.Embarked[test_x.Embarked=='C'] = 0.5test_x.Embarked[test_x.Embarked=='Q'] = 1return test_x
test_data_x = preprocessing(test_csv)

开始测试:

test_data_y = sess.run(temp_y,feed_dict={X:test_data_x})
由于最后的一层神经元用的sigmoid函数所以结果是一个概率值,此处

threshold = 0.8#阈值根据感觉test_data_y[test_data_y > threshold] = 1
test_data_y[test_data_y <= threshold] = 0test_data_y = test_data_y.reshape(418,)
test_data_y = test_data_y.astype(np.int32,copy=False)
test_data_y[test_data_y > threshold] = 1
test_data_y[test_data_y <= threshold] = 0
passengerId = np.arange(len(test_data_y))+892

out_cvs =  pd.DataFrame({'PassengerId':list(passengerId),'Survived':list(test_data_y)})
out_cvs.to_csv(path_or_buf = "../data/out.csv",index=False)
会输出一个out.csv文件,上传到kaggle里就行

完了就能看自己的排名楼0.0

这就是在下了,,嘿嘿,79约等于80,,还蛮不错的哈(尴尬


完整notebook 看码云:【码云链接,不错的话给个小星星吐舌头吐舌头吐舌头



这篇关于【机器学习】Tensorflow神经网络分析Kaggle的Titanic数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592657

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分