【机器学习】Tensorflow神经网络分析Kaggle的Titanic数据集

本文主要是介绍【机器学习】Tensorflow神经网络分析Kaggle的Titanic数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Titanic这也算是一个很经典的案例了,详情见【官网详情】(博主提交了一次,很菜七千多名,正确率:0.76555,排名有点渣,日后再优化,优化后,到两千多哈哈,0.79....左右,,还有很大的上升空间

分析一个案例我主要是一下几步:

【1】导入依赖,加载数据

【2】分析数据,了解数据

【3】格式化数据,预处理数据

【4】建立模型,训练模型

【5】使用模型,测试模型

基本就这五大步骤,

【1】导入依赖,加载数据

import pandas as pd
from pandas import Series,DataFrame
import numpy as np
import matplotlib.pyplot as plt# 设置图表中字体
import matplotlib as mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']data_train = pd.read_csv('../data/train.csv')
data_train.head()


data_train.head()主要是看看,数据是否加载上,是否家在正确。


【2】分析数据,了解数据

data_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          189 non-null object
Embarked       891 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
• PassengerId => 乘客ID
• Survived => 获救情况(1为获救,0为未获救)
• Pclass => 乘客等级(1/2/3等舱位)
• Name => 乘客姓名
• Sex => 性别
• Age => 年龄
• SibSp => 堂兄弟/妹个数
• Parch => 父母与小孩个数
• Ticket => 船票信息
• Fare => 票价
• Cabin => 客舱
• Embarked => 登船港口

data_train.describe()

        PassengerId	Survived	Pclass	           Age	          SibSp 	Parch	          Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200
count:汇总,mean:平均数,std:标准差(我猜的),min,max最大最小,25%,75%,50%,指的是中位数,

fig = plt.figure(figsize=(15,10))
fig.set(alpha=0.2)  # 设定图表颜色alpha参数plt.subplot2grid((2,3),(0,0))             # 在一张大图里分列几个小图
data_train.Survived.value_counts().plot(kind='bar')# 柱状图 
plt.title(u"获救情况 (1为获救)") # 标题
plt.ylabel(u"人数")  plt.subplot2grid((2,3),(0,1))
data_train.Pclass.value_counts().plot(kind="bar")
plt.ylabel(u"人数")
plt.title(u"乘客等级分布")plt.subplot2grid((2,3),(0,2))
plt.scatter(data_train.Survived, data_train.Age)
plt.ylabel(u"年龄")                         # 设定纵坐标名称
plt.grid(b=True, which='major', axis='y') 
plt.title(u"按年龄看获救分布 (1为获救)")plt.subplot2grid((2,3),(1,0), colspan=2)
data_train.Age[data_train.Pclass == 1].plot(kind='kde')   
data_train.Age[data_train.Pclass == 2].plot(kind='kde')
data_train.Age[data_train.Pclass == 3].plot(kind='kde')
plt.xlabel(u"年龄")# plots an axis lable
plt.ylabel(u"密度") 
plt.title(u"各等级的乘客年龄分布")
plt.legend((u'头等舱', u'2等舱',u'3等舱'),loc='best') # sets our legend for our graph.plt.subplot2grid((2,3),(1,2))
data_train.Embarked.value_counts().plot(kind='bar')
plt.title(u"各登船口岸上船人数")
plt.ylabel(u"人数")  
plt.show()

这几张图分别对获救情况、乘客等级、个口岸上船人数进行统计,右上角年龄与获救情况关系图,基本看不出来有关系,左下角乘客年龄与舱等级的分布,可分析出20-30岁的乘客较多的选择2-3等舱 大哭(年轻,最穷的时候),30-50岁普遍选择头等舱 生气(黄金时期)

#看看各乘客等级的获救情况
fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数Survived_0 = data_train.Pclass[data_train.Survived == 0].value_counts()
Survived_1 = data_train.Pclass[data_train.Survived == 1].value_counts()
df=pd.DataFrame({u'获救':Survived_1, u'未获救':Survived_0})
df.plot(kind='bar', stacked=True)#化成两层
plt.title(u"各乘客等级的获救情况")
plt.xlabel(u"乘客等级") 
plt.ylabel(u"人数") 
plt.show()

plt.plot(np.arange(3)+1,np.array(Survived_1/Survived_0))

下面图是对根据上图比例画出的线,关系已经很明显了,有钱真好,三等舱的获救率非常低
#看看各性别的获救情况
fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数Survived_m = data_train.Survived[data_train.Sex == 'male'].value_counts()
Survived_f = data_train.Survived[data_train.Sex == 'female'].value_counts()
df=pd.DataFrame({u'男性':Survived_m, u'女性':Survived_f})
df.plot(kind='bar', stacked=True)
plt.title(u"按性别看获救情况")
plt.xlabel(u"性别") 
plt.ylabel(u"人数")
plt.show()

都不用再画折线图了,很明显,女性获救几率,远大于男性,“妇女和孩子线上救生船”
#然后我们再来看看各种舱级别情况下各性别的获救情况
fig=plt.figure(figsize=(15,7))
fig.set(alpha=0.65) # 设置图像透明度,无所谓
plt.title(u"根据舱等级和性别的获救情况")ax1=fig.add_subplot(141)
data_train.Survived[data_train.Sex == 'female'][data_train.Pclass != 3].value_counts().plot(kind='bar', label="female highclass", color='#FA2479')
ax1.set_xticklabels([u"获救", u"未获救"], rotation=0)
ax1.legend([u"女性/高级舱"], loc='best')ax2=fig.add_subplot(142, sharey=ax1)
data_train.Survived[data_train.Sex == 'female'][data_train.Pclass == 3].value_counts().plot(kind='bar', label='female, low class', color='pink')
ax2.set_xticklabels([u"未获救", u"获救"], rotation=0)
plt.legend([u"女性/低级舱"], loc='best')ax3=fig.add_subplot(143, sharey=ax1)
data_train.Survived[data_train.Sex == 'male'][data_train.Pclass != 3].value_counts().plot(kind='bar', label='male, high class',color='lightblue')
ax3.set_xticklabels([u"未获救", u"获救"], rotation=0)
plt.legend([u"男性/高级舱"], loc='best')ax4=fig.add_subplot(144, sharey=ax1)
data_train.Survived[data_train.Sex == 'male'][data_train.Pclass == 3].value_counts().plot(kind='bar', label='male low class', color='steelblue')
ax4.set_xticklabels([u"未获救", u"获救"], rotation=0)
plt.legend([u"男性/低级舱"], loc='best')plt.show()


贵族女性几乎全部获救,是否获救和身份、性别关系很大。

fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数Survived_0 = data_train.Embarked[data_train.Survived == 0].value_counts()
Survived_1 = data_train.Embarked[data_train.Survived == 1].value_counts()
df=pd.DataFrame({u'获救':Survived_1, u'未获救':Survived_0})
df.plot(kind='bar', stacked=True)
plt.title(u"各登录港口乘客的获救情况")
plt.xlabel(u"登录港口") 
plt.ylabel(u"人数") plt.show()

三个港口与获救关系几乎持平,关系不是很大(关系不大也加入模型,只是权值小一些而已)

plt.figure(figsize=(15,7))
Survived_0 = data_train.SibSp[data_train.Survived == 0].value_counts()
Survived_1 = data_train.SibSp[data_train.Survived == 1].value_counts()
df=pd.DataFrame({u'获救':Survived_1, u'未获救':Survived_0})
df.plot(kind='bar', stacked=True)
plt.title(u"堂兄弟/妹个数数量与获救情况")
plt.xlabel(u"堂兄弟/妹个数数量") 
plt.ylabel(u"人数") 
plt.show()
plt.plot(np.arange(7),Survived_1/Survived_0)
plt.title(u"堂兄弟/妹个数数量与获救/未获救的比例")

根据右边折线图可以看出来,,有一个兄弟姐妹的获救概率比较大,是否获救和堂兄弟姐妹关系比较大。

基本上数据关系分析完了,这主要目的是为模型输入选取合适的参数。

【3】格式化数据,预处理数据

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          189 non-null object
Embarked       891 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB

Age和Cabin有缺失参数,由于Cabin缺失过半,暂不考虑使用此数据,Age比较重要,此处用平均值补全。

#为了简便年了暂时用平均数代替,
data_train.Age[data_train.Age.isnull()] = data_train.Age.mean()
#Cabin 缺少太多了,暂且踢掉
try:train_x = data_train[['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked']]
except:pass
train_x.info()

此处选择这几项参数【['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked']】

PassengerId,name没有实际含义去除即可,

      Pclass	Sex	 Age   SibSp	 Parch	Fare   Embarked
0	3	male	22.0	1	   0	7.2500	S
1	1	female	38.0	1	   0	71.2833	C
2	3	female	26.0	0	   0	7.9250	S
3	1	female	35.0	1	   0	53.1000	S
4	3	male	35.0	0	   0	8.0500	S

其中Sex和Embarked还是字符串的,需要数字化,

train_x.Sex.value_counts()
 
male      577
female    314
Name: Sex, dtype: int64
train_x.Embarked.value_counts()
S    645
C    169
Q     77
Name: Embarked, dtype: int64
Sex有两个属性,Embarked有三个属性,所以可以做如下赋值
 
train_x.Sex[train_x.Sex=='male'] = 1
train_x.Sex[train_x.Sex=='female'] = 0
train_x.Embarked[train_x.Embarked=='S'] = 0
train_x.Embarked[train_x.Embarked=='C'] = 0.5
train_x.Embarked[train_x.Embarked=='Q'] = 1

【4】建立模型,训练模型

都是老套路,主要学习莫烦的神经网络教程

"""
添加神经网络层的函数
inputs -- 输入内容
in_size -- 输入尺寸
out_size -- 输出尺寸
activation_function --- 激励函数,可以不用输入
"""
def add_layer(inputs,in_size,out_size,activation_function=None):W = tf.Variable(tf.zeros([in_size,out_size])+0.01)   #定义,in_size行,out_size列的矩阵,随机矩阵,全为0效果不佳b = tf.Variable(tf.zeros([1,out_size])+0.01)              #不建议为0Wx_plus_b = tf.matmul(inputs,W) + b                # WX + bif activation_function is None:                               #如果有激励函数就激励,否则直接输出output = Wx_plus_belse:output = activation_function(Wx_plus_b)return output
import tensorflow as tf
X = tf.placeholder(tf.float32,[None,7])
Y = tf.placeholder(tf.float32,[None,1])output1 = add_layer(X,7,14,activation_function = tf.nn.sigmoid)
output2 = add_layer(output1,14,7,activation_function = tf.nn.sigmoid)
temp_y = add_layer(output2,7,1,activation_function = tf.nn.sigmoid)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(Y-temp_y),reduction_indices=[1]))#先求平方,再求和,在求平均train_step = tf.train.AdamOptimizer(0.004).minimize(loss)#通过优化器,以0.1的学习率,减小误差loss
# train_x = iris[['a','b','c']]
# train_y = iris[['class']]#拆分训练集数据集,分为输入和输出
train_x = np.array(train_x).reshape(-1,7)
train_y = data_train.Survived.reshape(-1,1)sess = tf.Session()
sess.run(tf.global_variables_initializer())
save_process = []
for i in range(300000):#训练90000次sess.run(train_step,feed_dict={X:train_x,Y:train_y})if i%300 == 0:#每300次记录损失值(偏差值)save_process.append(sess.run(loss,feed_dict={X:train_x,Y:train_y}))if i%3000 == 0:#每300次记录损失值(偏差值)print(sess.run(loss,feed_dict={X:train_x,Y:train_y}))

画出loss曲线

#第前两个数据比较大,踢掉
save_process = np.delete(save_process,[0,1])
plt.plot(range(len(save_process)),save_process)

模型训练的还阔以,测试一下


【5】使用模型,测试模型

test_csv = pd.read_csv("../data/test.csv")

测试数据需要和训练数据有同样的预处理,所以讲预处理过程封装成函数:

def preprocessing(data):""""""items = ['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked']data.Age[data.Age.isnull()] = data.Age.mean()test_x = data[items]test_x.Sex[test_x.Sex=='male'] = 1test_x.Sex[test_x.Sex=='female'] = 0test_x.Embarked[test_x.Embarked=='S'] = 0test_x.Embarked[test_x.Embarked=='C'] = 0.5test_x.Embarked[test_x.Embarked=='Q'] = 1return test_x
test_data_x = preprocessing(test_csv)

开始测试:

test_data_y = sess.run(temp_y,feed_dict={X:test_data_x})
由于最后的一层神经元用的sigmoid函数所以结果是一个概率值,此处

threshold = 0.8#阈值根据感觉test_data_y[test_data_y > threshold] = 1
test_data_y[test_data_y <= threshold] = 0test_data_y = test_data_y.reshape(418,)
test_data_y = test_data_y.astype(np.int32,copy=False)
test_data_y[test_data_y > threshold] = 1
test_data_y[test_data_y <= threshold] = 0
passengerId = np.arange(len(test_data_y))+892

out_cvs =  pd.DataFrame({'PassengerId':list(passengerId),'Survived':list(test_data_y)})
out_cvs.to_csv(path_or_buf = "../data/out.csv",index=False)
会输出一个out.csv文件,上传到kaggle里就行

完了就能看自己的排名楼0.0

这就是在下了,,嘿嘿,79约等于80,,还蛮不错的哈(尴尬


完整notebook 看码云:【码云链接,不错的话给个小星星吐舌头吐舌头吐舌头



这篇关于【机器学习】Tensorflow神经网络分析Kaggle的Titanic数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592657

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据