NGS基因测序(panel)报告解读数据库汇总

2024-01-09 20:20

本文主要是介绍NGS基因测序(panel)报告解读数据库汇总,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天我们来梳理一下肿瘤基因报告解读常见的数据库,大家有机会可以自己查询并且解读,涉及到的数据库有dbSNP数据库 、gnomAD数据库、ExAC数据库、1000 Genomes、HGMD 数据库、OMIM数据库、ClinVar数据库、InterVar数据库 、ClinGen数据库、GeneReviews数据库、HPO数据库、NCBI Gene数据库、UCSC Genome Browser、OncoKB、COSMIC、TCGA、HGVS、DECIPHER、esp6500、Cancer Gene Census数据库,Familial Cancer Database数据库、intOGen数据库,真的是非常多,我们一个一个来了解一下。

人群数据库

dbSNP数据库(https://www.ncbi.nlm.nih.gov/snp/)

dbSNP是由NCBI提供的,在这个数据库,可以查看是否有人已经发现了你的变体。dbSNP不仅包含SNPs(单核苷酸多态性),还有很多其他的变异,如短删除、插入和多核苷酸多态性。dbSNP中的数据有两种主要类型:由用户提交,可以通过“提交的SNP”(ss)标识符来识别;由多个提交的数据和来自其他来源的数据组合而成的数据,可以通过“reference SNP” (rs)标识符识别。
在这里插入图片描述
如上图所示,dbSNP提供了关于变异体的大量信息,将显示任何可用的rs。以BRCA2为例,dbSNP不仅给出了一些基本信息,例如命名法、有机体或分子类型,而且它还列出了PubMed中关于该变体的引用,并提供了指向所有引用文章的直接链接。在中间的列中,可以找到更多的分类信息,比如MAF/Minor Allele Count, MAF是一个等位基因在人群中发生的频率。在第三栏中,会发现人类基因组变异学会(HGVS)的名字,根据不同的术语来识别正在研究的基因。

gnomAD数据库(http://gnomad.broadinstitute.org)

基因组聚合数据库 (Genome Aggregation Database, gnomAD)是一个致力于从各种大规模测序项目中收集和协调外显子组和基因组测序数据,并为更广泛的科学界提供汇总数据的研究者联盟。

外显子组聚合联盟 (Exome Aggregation Consortium, ExAC)是gnomAD的前身(第一个发布版),包含了大量自有的人类外显子组数据。

gnomAD(v3.1.1)基于GRCh38,其中短变异(short variant)数据集涵盖了76,156个互不相关个体的基因组测序数据,是各种疾病特异性研究和群体遗传研究的一部分。

gnomAD(v2.1.1)基于GRCh37,其中短变异数据集涵盖了125,748个外显子和15,708个基因组,这些基因组来自作为各种疾病特异性研究和群体遗传研究的一部分的不相关的个体,总计141,456个。

gnomAD是目前最大的人群频率数据库。这些数据来源于各种疾病研究项目及大型人群测序项目。数据库包含基因的基本信息(基因名称、包含的变异位点个数、其他数据库的链接等);覆盖度信息(外显子测序的数据和全基因组测序的数据) 。

ExAC数据库(http://gnomad.broadinstitute.org)

ExAC数据库的全称是(the Exome Aggregation Consortium),外显子组整合数据库,是gnomAD数据库的第一个版本,只包含了外显子测序的数据,该数据库旨在汇总和协调各种大规模测序项目的外显子组测序数据,并为科学界提供更广泛的摘要数据,该数据库已被整合到gnomAD数据库。

1000 Genomes(https://www.internationalgenome.org/)

1000 Genome Project 的目标是发现在人群中频率大于1%的变异位点,对来自不同人群的大量样本进行测序,识别到了许多的变异位点,为人类遗传变异的研究提供了一个综合的资源。

疾病数据库

HGMD 数据库(http://www.hgmd.org)

HGMD 是人类遗传性疾病突变位点金标准数据库,通过遗传咨询专家阅读高质量的文献,收集和整理相关变异位点信息构建。该数据库提供变异位点对应的转录本、变异类型、致病性、相关表型、参考文献、人群频率、功能预测、结构域等信息。

HGMD专业版提供变异位点对应的HGVS编号、蛋白质的变化、等级分类、Hg19和Hg38基因组坐标、蛋白结构域、人群频率、软件预测结果等。
在这里插入图片描述

OMIM数据库(https://www.ncbi.nlm.nih.gov/omim/)

OMIM,即在线人类孟德尔遗传(Online Mendelian Inheritance in Man),是一个综合的、权威的研究人类表型和基因型关系的数据库,收录了所有已知的孟德尔疾病,和超过16000个基因的信息(涵盖一大半人类已知的基因)。

OMIM并不是创造了这些数据,而是对已发表的研究结果的非常系统的整理与整合,并每日更新、免费获取。OMIM中的一个常见的疾病的页面,其内容类似一篇综述,包含:表型与基因的关系、临床简介、疾病基本信息与描述、临床特征、诊断、临床管理、发病机制、分子遗传、群体遗传、动物模型、背景历史、研究进展和参考文献。

ClinVar数据库(https://www.ncbi.nlm.nih.gov/clinvar/)

clinvar数据库是一个人类遗传变异及其与疾病关联信息的公共数据库,收录了包括单核苷酸变异(SNP)、插入缺失(Indel)等在内的各种遗传变异,目前已经成为了人类遗传变异及其与疾病关联信息的最权威和最全面的公共数据库,是人类基因组信息的重要组成部分之一。

该数据库的主要特点如下:

1、数据来源:clinvar数据库主要来源于各种文献报道,包括科研论文、临床诊断报告、重要数据库汇总等。

2、数据形式:clinvar数据库为非关系型数据库,使用XML格式进行存储,数据分为变异基因型、疾病与遗传变异之间的关联、变异性质、变异对宿主基因的影响程度、证据等多个维度进行描述。

3、数据质量:clinvar数据库对各种遗传变异的收录要求较高,要求进行规范的表述、严格的证据支持、清晰的证据链路等,从而保证数据的准确性、权威性。

InterVar数据库(http://wintervar.WGlab.org/)

InterVar同样是位点致病性评判数据库,可以实现对ACMG 28条判读标准中的18条进行自动化评分,其余10条由于需要后续证据输入或者参数调整(例如Sanger测序验证结果或家系验证等)。

ClinGen数据库(https://www.clinicalgenome.org/)

ClinGen是美国国立卫生研究院(NIH)资助的数据库资源,用于精准医学,研究基因和变异的临床相关性。ClinGen提供了变异的剂量敏感性,有助于辨别突变的显隐性异常模式。更重要的是ClinGen结合临床、遗传模式、人群、功能证据及专家评审,根据ACMG/AMP指南对变异进行致病性分类,结果保存在ClinVar中。实验室和临床医生也可以使用ClinGen的”variant curation tools”来**评估尚未经过专家审查的变异致病性的证据。

综合性肿瘤数据库

OncoKB(https://www.oncokb.org/)

OncoKB数据库介绍及爬虫爬取位点用药信息

COSMIC(https://cancer.sanger.ac.uk/cosmic)

COSMIC是世界上最大最全面的有关肿瘤的体细胞突变以及其影响的资源库。

COSMIC是一个在人类癌症中发现的体细胞获得性突变的在线数据库。体细胞突变是在非生殖细胞中发生的,不是由儿童遗传的。 COSMIC是癌症中体细胞突变目录(Catalogue Of Somatic Mutations In Cancer)的首字母缩写,它从科学文献中的论文和桑格研究所癌症基因组计划的大规模实验筛选中提取数据。该数据库可供学术研究人员免费使用,并可向其他人商业许可。

COSMIC数据库旨在收集和显示有关癌症体细胞突变的信息。它于2004年推出,仅有四种基因HRAS,KRAS2,NRAS和BRAF的数据。已知这四种基因在癌症中是体细胞突变的。自创建以来,数据库迅速扩展。到2005年,COSMIC包含从115,327个肿瘤中筛选出的529个基因,描述了20,981个突变。到2009年8月,它包含了150万次实验的信息,包括近370,000个肿瘤中的13,423个基因,并描述了超过90,000个突变。2010年7月发布的COSMIC第48版,与国际癌症研究机构合作,整合了p53的突变数据。此外,它还为最新的人类参考基因组构建提供了更新的基因坐标。以后每 3 个月更新一次。

COSMIC数据库包含数千种与癌症发展有关的体细胞突变。该数据库从两个主要来源收集信息:

(1)从文献中收集已知癌症基因的突变。经历人工治疗的基因列表通过它们在癌症基因普查中的存在来确定。
(2)纳入数据库的数据来自癌症基因组计划进行的癌症样本的全基因组重测序研究。

这篇关于NGS基因测序(panel)报告解读数据库汇总的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588317

相关文章

MySQL的ALTER TABLE命令的使用解读

《MySQL的ALTERTABLE命令的使用解读》:本文主要介绍MySQL的ALTERTABLE命令的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、查看所建表的编China编程码格式2、修改表的编码格式3、修改列队数据类型4、添加列5、修改列的位置5.1、把列

Linux CPU飙升排查五步法解读

《LinuxCPU飙升排查五步法解读》:本文主要介绍LinuxCPU飙升排查五步法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录排查思路-五步法1. top命令定位应用进程pid2.php top-Hp[pid]定位应用进程对应的线程tid3. printf"%

Druid连接池实现自定义数据库密码加解密功能

《Druid连接池实现自定义数据库密码加解密功能》在现代应用开发中,数据安全是至关重要的,本文将介绍如何在​​Druid​​连接池中实现自定义的数据库密码加解密功能,有需要的小伙伴可以参考一下... 目录1. 环境准备2. 密码加密算法的选择3. 自定义 ​​DruidDataSource​​ 的密码解密3

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查

Python+PyQt5实现MySQL数据库备份神器

《Python+PyQt5实现MySQL数据库备份神器》在数据库管理工作中,定期备份是确保数据安全的重要措施,本文将介绍如何使用Python+PyQt5开发一个高颜值,多功能的MySQL数据库备份工具... 目录概述功能特性核心功能矩阵特色功能界面展示主界面设计动态效果演示使用教程环境准备操作流程代码深度解

解读@ConfigurationProperties和@value的区别

《解读@ConfigurationProperties和@value的区别》:本文主要介绍@ConfigurationProperties和@value的区别及说明,具有很好的参考价值,希望对大家... 目录1. 功能对比2. 使用场景对比@ConfigurationProperties@Value3. 核

MySQL数据库实现批量表分区完整示例

《MySQL数据库实现批量表分区完整示例》通俗地讲表分区是将一大表,根据条件分割成若干个小表,:本文主要介绍MySQL数据库实现批量表分区的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录一、表分区条件二、常规表和分区表的区别三、表分区的创建四、将既有表转换分区表脚本五、批量转换表为分区

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Jupyter notebook安装步骤解读

《Jupyternotebook安装步骤解读》:本文主要介绍Jupyternotebook安装步骤,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、开始安装二、更改打开文件位置和快捷启动方式总结在安装Jupyter notebook 之前,确认您已安装pytho