Talk | EMNLP 2023 最佳长论文:以标签为锚-从信息流动的视角分析上下文学习

本文主要是介绍Talk | EMNLP 2023 最佳长论文:以标签为锚-从信息流动的视角分析上下文学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本期为TechBeat人工智能社区561线上Talk。

北京时间1月4(周四)20:00,北京大学博士生王乐安的Talk已准时在TechBeat人工智能社区开播!

他与大家分享的主题是: 以标签为锚-从信息流动的视角分析上下文学习,介绍了他的团队在上下文学习相关的分析工作所做的研究。

Talk·信息

主题:以标签为锚-从信息流动的视角分析上下文学习

嘉宾:北京大学博士生 王乐安

时间:北京时间 1月4日(周四)20:00

地点:TechBeat人工智能社区

点击下方链接,即可观看视频!

TechBeatTechBeat是荟聚全球华人AI精英的成长社区,每周上新来自顶尖大厂、明星创业公司、国际顶级高校相关专业在读博士的最新研究工作。我们希望为AI人才打造更专业的服务和体验,加速并陪伴其成长。icon-default.png?t=N7T8https://www.techbeat.net/talk-info?id=840

Talk·介绍

上下文学习无需参数更新,直观易用,非常契合大语言模型时代的需求。近来,已经有许多工作从不同角度分析了上下文学习。我们的工作从信息流动的角度审视了上下文学习,提出并验证了“标签词在上下文学习中起锚点作用”的假设。进一步地,基于这一假设,我们提出了三个应用,展示了我们的分析结论的应用潜力。

Talk大纲

1、背景 - 上下文学习相关的分析工作

2、猜想 - 上下文学习中存在”以标签为锚”的信息流动

3、猜想验证与应用 - 介绍我们如何验证这一猜想以及这一猜想存在什么应用

4、进一步讨论 - 我们的工作和其他同期的机制可解释性工作的相似性与关联

Talk·预习资料

Image

论文链接:https://arxiv.org/abs/2305.14160

Talk·提问交流

在Talk界面下的【交流区】参与互动!留下你的打call🤟和问题🙋,和更多小伙伴们共同讨论,被讲者直接翻牌解答!

你的每一次贡献,我们都会给予你相应的i豆积分,还会有惊喜奖励哦!

Talk·嘉宾介绍

Image

王乐安

北京大学博士生

王乐安,北大博士生,由孙栩老师指导。他目前的研究兴趣主要在于大模型的可解释性与机理。他在EMNLP 2023上发表的工作Label Words are Anchors: An Information Flow Perspective for Understanding In-Context Learning获得了最佳长论文奖。在此之前,他在北大图灵班(智能方向)获得了学士学位。

个人主页: https://www.techbeat.net/grzytrkj?id=36706


关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区

这篇关于Talk | EMNLP 2023 最佳长论文:以标签为锚-从信息流动的视角分析上下文学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/583448

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java 中 Optional 的用法及最佳实践

《Java中Optional的用法及最佳实践》在Java开发中,空指针异常(NullPointerException)是开发者最常遇到的问题之一,本篇文章将详细讲解Optional的用法、常用方... 目录前言1. 什么是 Optional?主要特性:2. Optional 的基本用法2.1 创建 Opti

Java 字符串操作之contains 和 substring 方法最佳实践与常见问题

《Java字符串操作之contains和substring方法最佳实践与常见问题》本文给大家详细介绍Java字符串操作之contains和substring方法最佳实践与常见问题,本文结合实例... 目录一、contains 方法详解1. 方法定义与语法2. 底层实现原理3. 使用示例4. 注意事项二、su

Java 单元测试之Mockito 模拟静态方法与私有方法最佳实践

《Java单元测试之Mockito模拟静态方法与私有方法最佳实践》本文将深入探讨如何使用Mockito来模拟静态方法和私有方法,结合大量实战代码示例,带你突破传统单元测试的边界,写出更彻底、更独立... 目录Mockito 简介:为什么选择它?环境准备模拟静态方法:打破“不可变”的枷锁传统困境解法一:使用M

linux查找java项目日志查找报错信息方式

《linux查找java项目日志查找报错信息方式》日志查找定位步骤:进入项目,用tail-f实时跟踪日志,tail-n1000查看末尾1000行,grep搜索关键词或时间,vim内精准查找并高亮定位,... 目录日志查找定位在当前文件里找到报错消息总结日志查找定位1.cd 进入项目2.正常日志 和错误日