Enhanced Jaya algorithm(一种增强的Jaya算法)

2024-01-07 15:20

本文主要是介绍Enhanced Jaya algorithm(一种增强的Jaya算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一种增强的Jaya算法:

参考文献:`Enhanced Jaya algorithm: A simple but efficient optimization method for constrained engineering design problems.


Jaya算法:

Jaya算法是由印度学者Venkata Rao 于2016年首次提出。该算法的特点在于无算法相关的参数且只有进化策略。算法首先进行种群初始化,其数学表达式如下:
x i = l + ( u − l ) × λ x_{i} =l+\left ( u-l \right ) \times \lambda xi=l+(ul)×λ
式中, l 和 u 表示变量的取值下界和上界, λ 表示服从均匀分布的随机数。 式中,l和u表示变量的取值下界和上界,\lambda 表示服从均匀分布的随机数。 式中,lu表示变量的取值下界和上界,λ表示服从均匀分布的随机数。
进化策略公式如下:
v i = x i + λ 1 × ( x B e s t − ∣ x i ∣ ) − λ 2 × ( x W o r s t − ∣ x i ∣ ) , i = 1 , 2 , ⋯ , N v_{i} =x_{i} +\lambda _{1} \times \left ( x_{Best}-\left | x_{i} \right | \right ) -\lambda _{2}\times \left ( x_{Worst}-\left | x_{i} \right | \right ),i=1,2,\cdots ,N vi=xi+λ1×(xBestxi)λ2×(xWorstxi),i=1,2,,N
式中, λ 1 , λ 2 表示两个随机数,其取值范围为 [ 0 , 1 ] ; x B e s t 表示当前种群个体中的最优个体; x W o r s t 表示当前种群个体中的最差个体; N 表示种群个体数目 式中,\lambda {1} ,\lambda {2}表示两个随机数,其取值范围为[0,1]; x_{Best}表示当前种群个体中的最优个体;x_{Worst}表示当前种群个体中的最差个体;N表示种群个体数目 式中,λ1,λ2表示两个随机数,其取值范围为[0,1]xBest表示当前种群个体中的最优个体;xWorst表示当前种群个体中的最差个体;N表示种群个体数目

接着,利用贪婪策略,选择进入下一次迭代的种群个体,其数学表达式如下:
x i = { v i , i f f ( v i ) ≤ f ( x i ) x i i f f ( v i ) > f ( x i ) x_{i} =\left\{\begin{matrix}v_{i},if f\left ( v_{i} \right ) \le f\left ( x_{i} \right ) & \\x_{i} if f\left ( v_{i} \right ) > f\left ( x_{i} \right ) & \end{matrix}\right. xi={vi,iff(vi)f(xi)xiiff(vi)>f(xi)


增强的Jaya算法(EJaya):

EJaya算法细化Jaya算法的进化策略,EJaya算法包含一个全局搜索策略和局部搜索策略。
(1)局部搜索策略:
通过引入种群个体的平均解,结合种群个体中的最优个体和最差个体分别计算局部上吸引点和局部下吸引点,并以此为基础提出一种新的种群局部进化策略。
种群个体平均解: M = 1 N ∑ i = 1 N x i , i = 1 , 2 , ⋯ , N 种群个体平均解:M=\frac{1}{N} \sum_{i=1}^{N} x_{i} ,i=1,2,\cdots ,N 种群个体平均解:M=N1i=1Nxi,i=1,2,,N
局部上吸引点: P u = λ 3 × x B e s t + ( 1 − λ 3 ) × M 局部上吸引点:P_{u} =\lambda _{3}\times x_{Best} +\left ( 1-\lambda _{3} \right ) \times M 局部上吸引点:Pu=λ3×xBest+(1λ3)×M
局部下吸引点: P l = λ 4 × x W o r s t + ( 1 − λ 4 ) × M 局部下吸引点:P_{l} =\lambda _{4}\times x_{Worst} +\left ( 1-\lambda _{4} \right ) \times M 局部下吸引点:Pl=λ4×xWorst+(1λ4)×M
新的局部进化策略: v i = x i + λ 5 × ( P u − x i ) − λ 6 × ( P l − x i ) , i = 1 , 2 , ⋯ , N 新的局部进化策略:v_{i} =x_{i} +\lambda _{5} \times \left ( P_{u}-x_{i} \right ) -\lambda _{6}\times \left ( P_{l}-x_{i} \right ),i=1,2,\cdots ,N 新的局部进化策略:vi=xi+λ5×(Puxi)λ6×(Plxi),i=1,2,,N
(2)全局进化策略:
引入历史种群个体来扩大搜索空间,提高算法的全局搜索性能。历史个体生成的数学表示如下:
X o l d = { X , i f P s w i t h ≤ 0.5 X o l d , i f P s w i t h > 0.5 X_{old} =\left\{\begin{matrix}X,ifP_{swith} \le 0.5 & \\X_{old} ,ifP_{swith} > 0.5 & \end{matrix}\right. Xold={X,ifPswith0.5Xold,ifPswith>0.5
X o l d = p e r m u t i n g ( X o l d ) X_{old}=permuting\left ( X_{old}\right ) Xold=permuting(Xold)
式中, P s w i t h 表示一个 [ 0 , 1 ] 内的随机数 式中,P_{swith}表示一个[0,1]内的随机数 式中,Pswith表示一个[0,1]内的随机数

EJaya算法的流程图

在这里插入图片描述

function [BestValue,XTarget,BestCost]=EJAYA(fobj,nPop,nVar,VarMin,VarMax,MaxIt)
% 参考文献:Enhanced Jaya algorithm: A simple but efficient optimization method for constrained engineering design problems
%%输入参数
%%fhd----------------目标方程
%%nPop---------------种群个体数目 
%%nVar---------------变量数目
%%VarMin-------------变量取值的下界
%%VarMax-------------变量取值的上界
%%MaxIt--------------算法的最大迭代次数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%输出参数
%%BestCost-----------每次迭代的最优适应度值(用于绘制迭代收敛曲线)
%%BestValue----------最优的适应度值
%%XTarget------------最优解(个体位置)
for i=1:nPopX(i,:)=VarMin+rand(1,nVar).*(VarMax-VarMin); %种群初始化f(i) = fobj(X(i,:));
end
gen=1;% 初始化算法迭代次数
[BestCost(1),ind]=min(f);
XTarget=X(ind,:);
old=X;% 初始化历史种群
% 主要迭代步骤
while(gen+1 <= MaxIt) [row,col]=size(X);[~,tindex]=min(f);Best=X(tindex,:); [~,windex]=max(f);worst=X(windex,:);xnew=zeros(row,col);fi1=rand;go1=1-fi1;fi2=rand;go2=1-fi2;ULP=(go1*Best+fi1*mean(X)-(X(i,:))); %Eq.(4)DLP=(go2*worst+fi2*mean(X)-(X(i,:))); %Eq(6)gl=rand;if gl<0.5old=X; %Eq.(8)elseold=old(randperm(nPop),:); %Eq.(9) endfor i=1:row fi=rand;if fi<0.5xnew(i,:)=(X(i,:))+rand(1,nVar).*ULP-rand(1,nVar).*DLP;%Eq.(7)elsexnew(i,:)=(X(i,:))+randn.*(old(i,:)-(X(i,:))) ; %Eq.(10)endendfor i=1:rowxnew(i,:) = max(min(xnew(i,:),VarMax),VarMin);% 边界检查fnew(i,:) = fobj(xnew(i,:));endfor i=1:nPopif(fnew(i)<f(i))X(i,:) = xnew(i,:);f(i) = fnew(i);endendgen = gen+1;[BestCost(gen),ind]=min(f);XTarget=X(ind);
end
BestValue=min(f);
end

这篇关于Enhanced Jaya algorithm(一种增强的Jaya算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580354

相关文章

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1