【大数据进阶第三阶段之Hive学习笔记】Hive基础入门

2024-01-07 04:28

本文主要是介绍【大数据进阶第三阶段之Hive学习笔记】Hive基础入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1、什么是Hive

2、Hive的优缺点

2.1、 优点

2.2、 缺点

2.2.1、Hive的HQL表达能力有限

2.2.2、Hive的效率比较低

3、Hive架构原理

3.1、用户接口:Client

3.2、元数据:Metastore

3.3、Hadoop

3.4、驱动器:Driver

Hive运行机制

4、Hive和数据库比较

 4.1、 数据更新

4.2、执行延迟

4.3、数据规模


1、什么是Hive

Hive:由Facebook开源用于解决海量结构化日志的数据统计。

Hive设计的初衷是:对于大量的数据,使得数据汇总,查询和分析更加简单。它提供了SQL,允许用户更加简单地进行查询,汇总和数据分析。同时,Hive的SQL给予了用户多种方式来集成自己的功能,然后做定制化的查询,例如用户自定义函数(User Defined Functions,UDFs).

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。

本质是:将HQL转化成MapReduce程序

1)Hive处理的数据存储在HDFS

2)Hive分析数据底层的实现是MapReduce

3)执行程序运行在Yarn上

2、Hive的优缺点


2.1、 优点

  • 操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。
  • 避免了去写MapReduce,减少开发人员的学习成本。
  • Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。
  • Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。
  • Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。


2.2、 缺点


2.2.1、Hive的HQL表达能力有限

(1)迭代式算法无法表达

(2)数据挖掘方面不擅长

2.2.2、Hive的效率比较低

(1)Hive自动生成的MapReduce作业,通常情况下不够智能化

(2)Hive调优比较困难,粒度较粗

3、Hive架构原理

3.1、用户接口:Client

CLI(hive shell)、JDBC/ODBC(java访问hive)、WEBUI(浏览器访问hive)

3.2、元数据:Metastore

元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;

默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore

3.3、Hadoop

使用HDFS进行存储,使用MapReduce进行计算。

3.4、驱动器:Driver

  • 解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
  • 编译器(Physical Plan):将AST编译生成逻辑执行计划。
  • 优化器(Query Optimizer):对逻辑执行计划进行优化。
  • 执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。

Hive运行机制

Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。
 

4、Hive和数据库比较

    由于Hive采用类似SQL的查询语言HQL,因此很容易将Hive理解为数据库。其实从结构来看,Hive 和数据库除了用于类似的查询语言,
再无类似之处。

 4.1、 数据更新

    由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少。因此,Hive中不建议对数据的改写,所有数据都是在加载的时候确定好的。而数据库中的数据通常是需要进行

修改的,因此可以采用insert into ... values添加数据,使用update ... set修改数据

4.2、执行延迟

     Hive在查询数据的时候,由于没有索引,需要扫描整个表。因此延迟较高。由于Hive底层使用的MR框架,而MR本身具有较高的延迟,因此在利用MR执行Hive查询的时候,也有较高的延迟。

4.3、数据规模

由于Hive简历在集群上可以利用MR进行并行计算,因此可以支持很大规模的数据。

这篇关于【大数据进阶第三阶段之Hive学习笔记】Hive基础入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578717

相关文章

MySQL DQL从入门到精通

《MySQLDQL从入门到精通》通过DQL,我们可以从数据库中检索出所需的数据,进行各种复杂的数据分析和处理,本文将深入探讨MySQLDQL的各个方面,帮助你全面掌握这一重要技能,感兴趣的朋友跟随小... 目录一、DQL 基础:SELECT 语句入门二、数据过滤:WHERE 子句的使用三、结果排序:ORDE

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=