单层LSTM网络对MNIST数据集分类

2024-01-07 03:18

本文主要是介绍单层LSTM网络对MNIST数据集分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

单层LSTM网络对MNIST数据集分类

实验代码:(使用tensorflow框架)

# -*- coding: utf-8 -*-import tensorflow as tf
# 导入 MINST 数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/data/", one_hot=True)n_input = 28 # MNIST data 输入 (img shape: 28*28)
n_steps = 28 # timesteps
n_hidden = 128 # hidden layer num of features
n_classes = 10  # MNIST 列别 (0-9 ,一共10类)tf.reset_default_graph()# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])x1 = tf.unstack(x, n_steps, 1)#1 BasicLSTMCell
lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32)#2 LSTMCell
#lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0)
#outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32)#3 gru
#gru = tf.contrib.rnn.GRUCell(n_hidden)
#outputs = tf.contrib.rnn.static_rnn(gru, x1, dtype=tf.float32)#4 创建动态RNN
#outputs,_  = tf.nn.dynamic_rnn(gru,x,dtype=tf.float32)
#outputs = tf.transpose(outputs, [1, 0, 2])pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)learning_rate = 0.001
training_iters = 100000
batch_size = 128
display_step = 10# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))# 启动session
with tf.Session() as sess:sess.run(tf.global_variables_initializer())step = 1# Keep training until reach max iterationswhile step * batch_size < training_iters:batch_x, batch_y = mnist.train.next_batch(batch_size)# Reshape data to get 28 seq of 28 elementsbatch_x = batch_x.reshape((batch_size, n_steps, n_input))# Run optimization op (backprop)sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})if step % display_step == 0:# 计算批次数据的准确率acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})# Calculate batch lossloss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \"{:.6f}".format(loss) + ", Training Accuracy= " + \"{:.5f}".format(acc))step += 1print (" Finished!")# 计算准确率 for 128 mnist test imagestest_len = 128test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))test_label = mnist.test.labels[:test_len]print ("Testing Accuracy:", \sess.run(accuracy, feed_dict={x: test_data, y: test_label}))

实验结果:
Iter 1280, Minibatch Loss= 2.098885, Training Accuracy= 0.30469
Iter 2560, Minibatch Loss= 1.772232, Training Accuracy= 0.38281
Iter 3840, Minibatch Loss= 1.404505, Training Accuracy= 0.52344
Iter 5120, Minibatch Loss= 1.321466, Training Accuracy= 0.57031
Iter 6400, Minibatch Loss= 1.020606, Training Accuracy= 0.65625
Iter 7680, Minibatch Loss= 0.767583, Training Accuracy= 0.76562
Iter 8960, Minibatch Loss= 0.945606, Training Accuracy= 0.66406
Iter 10240, Minibatch Loss= 0.643211, Training Accuracy= 0.78906
Iter 11520, Minibatch Loss= 0.737389, Training Accuracy= 0.76562
Iter 12800, Minibatch Loss= 0.589967, Training Accuracy= 0.83594
Iter 14080, Minibatch Loss= 0.432091, Training Accuracy= 0.89062
Iter 15360, Minibatch Loss= 0.375092, Training Accuracy= 0.90625
Iter 16640, Minibatch Loss= 0.509971, Training Accuracy= 0.82031
Iter 17920, Minibatch Loss= 0.431015, Training Accuracy= 0.85156
Iter 19200, Minibatch Loss= 0.420453, Training Accuracy= 0.85156
Iter 20480, Minibatch Loss= 0.338827, Training Accuracy= 0.88281
Iter 21760, Minibatch Loss= 0.427024, Training Accuracy= 0.86719
Iter 23040, Minibatch Loss= 0.419629, Training Accuracy= 0.87500
Iter 24320, Minibatch Loss= 0.343750, Training Accuracy= 0.90625
Iter 25600, Minibatch Loss= 0.232130, Training Accuracy= 0.92188
Iter 26880, Minibatch Loss= 0.491618, Training Accuracy= 0.89062
Iter 28160, Minibatch Loss= 0.226970, Training Accuracy= 0.92188
Iter 29440, Minibatch Loss= 0.287028, Training Accuracy= 0.91406
Iter 30720, Minibatch Loss= 0.348053, Training Accuracy= 0.90625
Iter 32000, Minibatch Loss= 0.232494, Training Accuracy= 0.92969
Iter 33280, Minibatch Loss= 0.294077, Training Accuracy= 0.89062
Iter 34560, Minibatch Loss= 0.269400, Training Accuracy= 0.90625
Iter 35840, Minibatch Loss= 0.257503, Training Accuracy= 0.92969
Iter 37120, Minibatch Loss= 0.176288, Training Accuracy= 0.95312
Iter 38400, Minibatch Loss= 0.263634, Training Accuracy= 0.89844
Iter 39680, Minibatch Loss= 0.350406, Training Accuracy= 0.89062
Iter 40960, Minibatch Loss= 0.175449, Training Accuracy= 0.94531
Iter 42240, Minibatch Loss= 0.311644, Training Accuracy= 0.89844
Iter 43520, Minibatch Loss= 0.202412, Training Accuracy= 0.92188
Iter 44800, Minibatch Loss= 0.238732, Training Accuracy= 0.92188
Iter 46080, Minibatch Loss= 0.262362, Training Accuracy= 0.91406
Iter 47360, Minibatch Loss= 0.277031, Training Accuracy= 0.92188
Iter 48640, Minibatch Loss= 0.167007, Training Accuracy= 0.93750
Iter 49920, Minibatch Loss= 0.208343, Training Accuracy= 0.95312
Iter 51200, Minibatch Loss= 0.237634, Training Accuracy= 0.91406
Iter 52480, Minibatch Loss= 0.133993, Training Accuracy= 0.96094
Iter 53760, Minibatch Loss= 0.255377, Training Accuracy= 0.92188
Iter 55040, Minibatch Loss= 0.204812, Training Accuracy= 0.92969
Iter 56320, Minibatch Loss= 0.183624, Training Accuracy= 0.92969
Iter 57600, Minibatch Loss= 0.131443, Training Accuracy= 0.96094
Iter 58880, Minibatch Loss= 0.096448, Training Accuracy= 0.97656
Iter 60160, Minibatch Loss= 0.163977, Training Accuracy= 0.96875
Iter 61440, Minibatch Loss= 0.185323, Training Accuracy= 0.95312
Iter 62720, Minibatch Loss= 0.107512, Training Accuracy= 0.97656
Iter 64000, Minibatch Loss= 0.174152, Training Accuracy= 0.95312
Iter 65280, Minibatch Loss= 0.173235, Training Accuracy= 0.95312
Iter 66560, Minibatch Loss= 0.115825, Training Accuracy= 0.96875
Iter 67840, Minibatch Loss= 0.190322, Training Accuracy= 0.92969
Iter 69120, Minibatch Loss= 0.073072, Training Accuracy= 0.97656
Iter 70400, Minibatch Loss= 0.161416, Training Accuracy= 0.93750
Iter 71680, Minibatch Loss= 0.148715, Training Accuracy= 0.95312
Iter 72960, Minibatch Loss= 0.174622, Training Accuracy= 0.95312
Iter 74240, Minibatch Loss= 0.100780, Training Accuracy= 0.97656
Iter 75520, Minibatch Loss= 0.177840, Training Accuracy= 0.96094
Iter 76800, Minibatch Loss= 0.119568, Training Accuracy= 0.96094
Iter 78080, Minibatch Loss= 0.116565, Training Accuracy= 0.96094
Iter 79360, Minibatch Loss= 0.124705, Training Accuracy= 0.96094
Iter 80640, Minibatch Loss= 0.068246, Training Accuracy= 0.97656
Iter 81920, Minibatch Loss= 0.152009, Training Accuracy= 0.97656
Iter 83200, Minibatch Loss= 0.150834, Training Accuracy= 0.96094
Iter 84480, Minibatch Loss= 0.082806, Training Accuracy= 0.98438
Iter 85760, Minibatch Loss= 0.239210, Training Accuracy= 0.94531
Iter 87040, Minibatch Loss= 0.194339, Training Accuracy= 0.94531
Iter 88320, Minibatch Loss= 0.141747, Training Accuracy= 0.96094
Iter 89600, Minibatch Loss= 0.110870, Training Accuracy= 0.97656
Iter 90880, Minibatch Loss= 0.066232, Training Accuracy= 0.98438
Iter 92160, Minibatch Loss= 0.085497, Training Accuracy= 0.96875
Iter 93440, Minibatch Loss= 0.141791, Training Accuracy= 0.96094
Iter 94720, Minibatch Loss= 0.143089, Training Accuracy= 0.93750
Iter 96000, Minibatch Loss= 0.234196, Training Accuracy= 0.93750
Iter 97280, Minibatch Loss= 0.143507, Training Accuracy= 0.94531
Iter 98560, Minibatch Loss= 0.069923, Training Accuracy= 0.96875
Iter 99840, Minibatch Loss= 0.079662, Training Accuracy= 0.98438
Finished!
Testing Accuracy: 0.976562


参考资料:《深度学习之Tensorflow》李金洪编著

这篇关于单层LSTM网络对MNIST数据集分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578550

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I