geemap学习笔记041:Landsat Collection2系列数据去云算法总结

本文主要是介绍geemap学习笔记041:Landsat Collection2系列数据去云算法总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

去云算法是进行数据处理中所要进行一步重要操作,Sentinal-2数据中已经提供了去云算法,但是Landsat Collection2系列数据中并没有提供去云算法,下面就以Landsat 8 Collection2为例进行介绍。

1 导入库并显示地图

import ee
import geemapee.Initialize()
Map = geemap.Map()
Map

2 Landsat 8 Collection2去云

Map = geemap.Map()# Landsat-8 Collection2 去云算法
def rmL8CloudNew(image):#根据'QA_PIXEL'波段,如果设置了云位(3)并且云阴影位(4)较高,则认为它是坏像素。cloudShadowBitMask = (1 << 4)cloudsBitMask = (1 << 3)qa = image.select('QA_PIXEL')mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0) \.And(qa.bitwiseAnd(cloudsBitMask).eq(0))return image.updateMask(mask) \.copyProperties(image) \.copyProperties(image, ["system:time_start"])# 应用缩放因子
def apply_scale_factors(image):optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)return image.addBands(optical_bands, None, True).addBands(thermal_bands, None, True)centroid = ee.Geometry.Point([-122.4439, 37.7538]) #创建一个点坐标collection = (ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') #Landsat 8数据.filterDate('2021-08-01', '2021-09-01') #时间.filterBounds(centroid) #筛选经过点的数据.filter(ee.Filter.gt('CLOUD_COVER', 20)) #获取一幅云量较多的数据.map(rmL8CloudNew)  #进行map去云.map(apply_scale_factors) #应用缩放因子
) image = collection.first() #选择第一景数据vis = {'bands': ['SR_B4', 'SR_B3', 'SR_B2'],'min': 0.0,'max': 0.3,
}#设置可视化参数Map.centerObject(image, 8) #设置中心
Map.addLayer(image, vis, 'Landsat-8')
Map

未进行去云之前
image.png

去云之后的结果,其结果基本就是将云像素给去掉。
image.png

后记

大家如果有问题需要交流或者有项目需要合作,可以加Q Q :504156006详聊,加好友请留言“CSDN”,谢谢。

这篇关于geemap学习笔记041:Landsat Collection2系列数据去云算法总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572482

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十