算法导论复习——CHP22 分支限界法

2024-01-04 12:36

本文主要是介绍算法导论复习——CHP22 分支限界法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LIFO和FIFO分枝-限界法        

        采用宽度优先策略,在生成当前E-结点全部儿子之后再生成其它活结点的儿子,且用限界函数帮助避免生成不包含答案结点子树的状态空间的检索方法。两种基本设计策略: FIFO检索:活结点表采用队列;LIFO检索:活结点表采用栈。

        如采用FIFO分支-限界法检索4-皇后问题的状态空间树:

LC-检索(Least Cost,A*算法)

        LIFO和FIFO分枝-限界法存在的问题

        对下一个E-结点的选择规则过于死板。对于有可能快速检索到一个答案结点的结点没有给出任何优先权,如结点30。

        解决:做某种排序,让可以导致答案结点的活结点排在前面 。

        如何排序? 寻找一种“有智力”的排序函数C(·),来选取下一个E 结点,加快到达一答案结点的检索速度。

        如何衡量结点的优先等级?

        对于任一结点,用该结点导致答案结点的成本(代价) 来衡量该结点的优先级——成本越小越优先

        对任一结点X,可以用两种标准来衡量结点的代价:

        1)在生成一个答案结点之前,子树 X 需要生成的结点数。

        2)在子树 X 中离 X 最近的那个答案结点到 X 的路径长度。

        C(x)

         “有智力”的排序函数,依据成本排序,优先选择成本最小的活结点作为下一个E结点进行扩展。 C(·)又称为“结点成本函数” n 结点成本函数C(X)的取值:

        1)如果X是答案结点,则C(X)是由状态空间树的根结点到X 的成本(即所用的代价,可以是级数、计算复杂度等)。

        2) 如果X不是答案结点且子树X不包含任何答案结点,则 C(X)=∞

        3) 如果X不是答案结点但子树X包含答案结点,则C(X)应等于子树X中具有最小成本的答案结点的成本。

        \widehat{c}(x)

        计算结点X的代价通常要检索子树X才能确定,因此 计算C(X)的工作量和复杂度与解原始问题是相同的。 n 计算结点成本的精确值是不现实的——相当于求解 原始问题。怎么办? n 结点成本的估计函数\widehat{c}(x)包括两部分:h(X)和\widehat{g}(x)

        \widehat{g}(x)是由X到达一个答案结点所需成本的估计函数

                性质:单纯使用选择E结点会导致算法偏向纵深检查。

        故引进h(X)改进成本估计函数:h(x)=根结点到结点X的成本——已发生成本。

                f(·)是一个非降函数。 非零的f(·)可以减少算法作偏向于纵深检查的可能性, 它强使算法优先检索更靠近答案结点但又离根更近的结点。 

        LC-检索:选择\widehat{c}(x)值最小的活结点作为下一个E-结点的状态空间树检索方法。

                特例:

                BFS: 依据级数来生成结点,

                D-Search:令f (h(X)) =0;所以当Y是X的一个儿子时, 总有

        LC分支-限界检索:带有限界函数的LC-检索

        LEAST(E):在活结点表中找一个具有最小成本估计值的活结点,从活结点表中删除这个结点,并将此结点放在变量E中返回。

        ADD(X):将新的活结点X加到活结点表中。

        活结点表:以优先队列存放 

不同估算函数对于结果的影响

        1、当估算的距离等于实际距离时,一路下去,肯定就是最优的解,而且基本不用扩展其它的点。

        2、如果估算距离小于实际距离时,则到最后一定能找到一条最短路径,但是有可能会经过很多无效的点。(过于乐观,以h(X)为主)

        3、如果估算距离大于实际距离时,有可能就很快找到一条通往目的地的路径,但是却不一定是最优的解。(过于悲观,以g(X)为主)

        成本函数在分支-限界算法中的应用

        假定每个答案结点X有一个与其相联系的c(X),且找成本最小的答案结点。

        1)最小成本的下界为X的成本估计函数。当时, \widehat{c}(x)给出了由结点X求解的最小成本的下界,作为启发性函数,减 少选取E结点的盲目性。

        2)最小成本的上界 。最小成本的上界 定义U为最小成本解的成本上界,则对具有的所有活结点可以被杀死,从而可以进一步使算法加速,减少求解的盲目性。

        最小成本上界U的求取:

        1)初始值:利用启发性方法赋初值,或置为∞

        2)每找到一个新的答案结点后修正U,U取当前最小成本值。 注:只要U的初始值不小于最小成本答案结点的成本,利用U就不会杀死可以到达最小成本答案结点的活结点。

利用分枝-限界算法求解最优化问题

        可行解:类似于n-元组的构造,把可行解可能的构造过程用 “状态空间树”表示出来。

        最优解:把对最优解的检索表示成对状态空间树答案结点的 检索。

        成本函数:每个结点赋予一个成本函数c(X) ,并使得代表最优解的答案结点的c(X)是所有结点成本的最小值 。

这篇关于算法导论复习——CHP22 分支限界法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/569360

相关文章

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.