【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证

本文主要是介绍【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证

前言

本文介绍六种类型的神经网络分类预测模型

1.模型选择

  • 前馈神经网络 (FFNN)

  • 人工神经网络 (ANN)

  • 级联前向神经网络 (CFNN)

  • 循环神经网络 (RNN)

  • 广义回归神经网络 (GRNN)

  • 概率神经网络 (PNN)

2.数据情况
357行样本,12输入,1输出,4分类。
无交叉验证情况,默认70%训练,30%测试。

     %%  导入数据
res = xlsread('数据集C.xlsx');
feat=res(:,1:end-1);
label=res(:,end);
T_sim1  = []; T_sim2  = []; 
ytest2 = []; 
ytrain2 = []; 
ho=0.3;%测试集的比例

3.程序使用
更改type类型即可自动筛选模型并运行。

switch typecase 'NN'     ;case 'FFNN'   ; case 'CFNN'   ; case 'RNN'    ; case 'GRNN'   ;case 'PNN'    ;
end

4.通用参数
Hidden_size = [10,10];%隐含层神经元
Max_epochs = 50; %最大训练次数
tf = 1; %2为交叉验证, 1无交叉验证。

一、前馈神经网络 (FFNN)

1、无交叉验证

tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

在这里插入图片描述

2、有交叉验证(3折为例)

tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

在这里插入图片描述

二、级联前向神经网络 (CFNN)

1、无交叉验证

tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

**加粗样式**

2、有交叉验证(3折为例)

tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

**加粗样式**

三、广义回归神经网络 (GRNN)

1、无交叉验证

tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折
num_spread=1;

在这里插入图片描述

2、有交叉验证(3折为例)

tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折
num_spread=1;

在这里插入图片描述

四、人工神经网络 (NN)

1、无交叉验证

tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

在这里插入图片描述

2、有交叉验证(3折为例)

tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

在这里插入图片描述

五、循环神经网络 (RNN)

1、无交叉验证

tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折

在这里插入图片描述

2、有交叉验证(3折为例)

tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折

在这里插入图片描述

六、循环神经网络 (RNN)

1、无交叉验证

tf            = 1;  %2为交叉验证, 1无交叉验证。
kfold         = 1; %K折
num_spread = 100;

在这里插入图片描述

2、有交叉验证(3折为例)

tf            = 2;  %2为交叉验证, 1无交叉验证。
kfold         = 3; %K折
num_spread = 100;

在这里插入图片描述

七、代码获取

1.阅读首页置顶文章
2.关注CSDN
3.根据自动回复消息,回复“88期”以及相应指令,即可获取对应下载方式。

这篇关于【MATLAB第88期】基于MATLAB的6种神经网络(ANN、FFNN、CFNN、RNN、GRNN、PNN)多分类预测模型对比含交叉验证的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/569185

相关文章

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四

exfat和ntfs哪个好? U盘格式化选择NTFS与exFAT的详细区别对比

《exfat和ntfs哪个好?U盘格式化选择NTFS与exFAT的详细区别对比》exFAT和NTFS是两种常见的文件系统,它们各自具有独特的优势和适用场景,以下是关于exFAT和NTFS的详细对比... 无论你是刚入手了内置 SSD 还是便携式移动硬盘或 U 盘,都需要先将它格式化成电脑或设备能够识别的「文

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

MySQL中的交叉连接、自然连接和内连接查询详解

《MySQL中的交叉连接、自然连接和内连接查询详解》:本文主要介绍MySQL中的交叉连接、自然连接和内连接查询,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、引入二、交php叉连接(cross join)三、自然连接(naturalandroid join)四